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Those swirls in the cream mixing into the coffee? That’s us. Ephemeral patterns of

complexity, riding a wave of increasing entropy from simple beginnings to a simple end.

We should enjoy the ride.

Sean Carroll
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SUMMARY

Nuclear waste is challenging to store, handle, and process. The United States Depart-

ment of Energy is currently (as of August 2025) building a waste treatment plant to vitrify

waste at the Hanford site, and there has been increasing interest in the use of real-time

and remote spectroscopic sensors for monitoring radioactive waste at this and other sites.

However, there are significant technological hurdles preventing the immediate application

of spectroscopic sensors to nuclear waste. The radioactive waste is a multicomponent,

inhomogeneous, multiphase, and radioactive slurry with the potential for ongoing chemi-

cal/nuclear reactions and batch-varying particle morphology. Spectroscopic sensors have

seen regular use in laboratory-scale reaction monitoring, not industrial nuclear-waste pro-

cessing. There remain many unsolved questions and unconquered hurdles precluding the

use of spectroscopic sensors for a safer, more efficient, and more robust nuclear-waste pro-

cessing outlook.

This thesis introduces methods, shows data, and presents studies for monitoring multi-

component solutions, quantifying signal attenuation in slurries, and utilizing data for real-

time fault detection in multicomponent slurries. Given the legacy of nuclear waste that

has been left for current and future generations, my engineering objective is to enable safe

and efficient nuclear-waste processing using the most appropriate methods, whether those

methods exist or require development.
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CHAPTER 1

INTRODUCTION

Nuclear waste is a pressing issue of our time. As nuclear technologies emerged in

the 20th century, improved engineering methods enabled the identification, isolation, and

utilization of radioactive isotopes [1]. However, a different set of challenges followed the

nuclear exploration of the 20th century. Radioactive waste has been left behind that presents

a sustained environmental and anthropological hazard; this material has been called legacy

waste.

Legacy nuclear waste is stored at several sites in the United States. This thesis focuses

specifically on two sites: The Hanford site in Washington State and the Savannah River

Site in South Carolina. Since the radioactive waste will remain an anthropological and

ecological hazard for thousands of years and given the waste has historically leaked from

its storage vessels into the surrounding groundwater, the United States Department of En-

ergy (US DOE) has decided that the waste at these sites will be immobilized for long-term

storage. The Savannah River Site has been processing high-level waste (HLW)1 nuclear

waste since 1996. However, a new Salt Waste Processing Facility (SWPF) has been re-

cently constructed and has been operating since 2020. The Hanford sister site has also (as

of the completion of this thesis) completed construction of the low-activity waste (LAW)

processing facility as part of the larger Waste Treatment Plant (WTP), with the first ra-

dioactive processing expected to begin in 2025. Construction is currently underway for an

analogous processing facility for HLW at the Hanford WTP.

Nuclear waste presents a uniquely challenging process control environment due to ra-

dioactivity that introduces new chemistry, precludes the use of unshielded electronic equip-

1Nuclear-waste literature makes abundant use of acronyms that are not common elsewhere. Acronyms
are used where appropriate to match available literature while also being defined at first use in each chapter
to improve readability of the content.
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ment, and prevents regular human interaction with processing equipment [1, 2, 3]. How-

ever, nuclear-waste vitrification has a significant history dating back to the 1950’s in Canada

and the UK, with the first ceramic melter for the vitrification of HLW commissioned at

Batelle Pacific Northwest Laboratories (PNL) in 1984 [4]. However, there are significant

technical challenges with current waste-processing strategies:

• Effective process models do not exist [5, 6]

– Legacy nuclear waste is highly multicomponent, multiphase, and inhomoge-

neous between and within storage tanks — models cannot accurately predict

behavior

– Time-varying radioactivity makes chemical equilibrium a moving target

• Measurements are collected by extracting radioactive waste from the process and

having humans perform analyses on the waste sample in an onsite laboratory [7, 8,

9]

– Time consuming — slow process feedback and process decisions

– Exposes humans to radioactivity

• Slurries are challenging to mix at large scales [10, 11, 12]

– Poor mixing may affect quality of both in situ measurements and grab samples

– Tanks may not be well-mixed when moving from one vessel to the next

• Large amounts of radioactivity [13, 14]

– human and ecological safety hazard

– incompatible with electronic equipment

– unanticipated chemical behavior through radiolysis

2
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Given that model-based methods are insufficiently accurate and mass-balance modeling

introduces uncertainty beyond what the US DOE is willing to accept, there is a need for

process measurement — feedback [7]. However, measuring multicomponent, rheologically

complex, and radioactive slurries is a complex issue with nuance; no available instruments

have been implemented under the conditions expected during nuclear-waste processing.

To address the aforementioned challenges, this thesis investigates process analytical tech-

nology (PAT) tools for providing accurate, real-time, process-relevant information so that

nuclear-waste processing can be achieved efficiently and safely. The remainder of the intro-

duction will be devoted to discussing the technical state-of-the-art for nuclear-waste process

monitoring, the Hanford site, the Savannah River Site, and vibrational spectroscopy before

finally providing the content organization for this thesis.

1.1 Real-Time In-Line Monitoring

Presently, most nuclear-waste processing decisions are made at process hold points

where waste samples (grab samples) are taken to an on-site laboratory where an array of

analytical techniques are performed to ascertain: 1) which glass-forming chemicals (GFCs)

are required to make effective glass for a given waste batch 2) and what is in a given waste

batch for regulatory, decision-making, and accounting purposes.

“Grab-sampling” (analytical measurements using ion chromatography (IC), inductively

coupled plasma - mass spectrometry (ICP-MS), among other analytical tools) can provide

necessary measurements of stream composition [7, 8]. However, sampling in this manner

provides a radioactive exposure risk for workers and can delay downstream decision mak-

ing until analytical lab results are provided (which may be on the order of hours to several

days). A mass-balance approach has been considered that would eliminate some grab-

sampling locations [15]. However, mass-balance modeling is a feed-forward endeavor;

process upsets, faults, and uncharted conditions or reactions may lead to inaccuracies in

predicted behavior.
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Much published work has been done recently to develop optical spectroscopy for the

needs of nuclear-waste systems. For measuring the composition of slurries, work has been

done to develop Raman spectroscopy in turbid environments [16, 17]. Attenuated total

reflectance - Fourier transform infrared (ATR-FTIR) spectroscopy has been shown to be

effective in measuring the solution phase of nuclear-waste simulants [18], including in the

presence of solids [19]. Research has been done in the field of chemometrics, where pre-

processing can decrease the experimental burden of creating large calibration datasets [20,

21]. Instrument hardware has also been investigated as it relates to quantifying nuclear

waste with multiple Raman excitation wavelengths [22] or multiple probes [16, 23]. Par-

tial least squares regression (PLSR) has been well-studied for quantifying the composition

of nuclear-waste mixtures [21, 24], but alternative model structures have been proposed

including a piecewise-linear PLSR model that leverages spectral (specifically UV-Vis) lin-

earity over a narrow concentration or process variable range [25]. A number of researchers

have used multiple sensors for measuring non-radioactive nuclear-waste simulants [16, 19,

20, 21, 26], while others have measured radioactive waste samples [24, 27].

Despite all of this work, there are scientific gaps on using these sensors: 1) in dense

slurries of multicomponent solids [19, 28], 2) for analysis of multicomponent mixtures

with training data that do not represent process conditions [29, 30, 31], and 3) for fault

detection in slurry systems [32, 33].

1.2 The Hanford Site

The Hanford Site in Washington State contains 56 million gallons of radioactive chem-

ical waste (196 MCi as of 2003 [13]) with approximately 1 million gallons having leaked

from underground tanks [34, 35, 36, 37]. To address environmental issues, the United

States Department of Energy is acting to clean up the released waste and to immobilize

waste that is still in containment. The waste still in the underground tanks will be separated

into LAW and HLW before being vitrified into borosilicate glass via the addition of GFCs
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[38]. The waste at Hanford is inhomogeneous; it is located in 177 underground tanks that

have different compositions due to being filled over the course of 45 years of plutonium

production (1945 – 1990) in addition to subsequent tank mixing and processing [36, 5]. To

create a stable and optimum glass form from a nuclear-waste slurry, waste loading must be

considered as a function of the waste’s composition and physical properties.

Currently, the process at Hanford is expected to combine mass-balance with measure-

ment. The planned system will utilize a Monte-Carlo mass-balance model combined with

laboratory measurements taken of the incoming waste stream (before processing) and prior

to being melted [10, 39]. The ability to monitor waste remotely at Hanford is impera-

tive because of the dangerous and time-consuming nature of grab-sampling, along with the

immense remaining cost ($364.0 billion or greater) and processing time (waste treatment

completion scheduled for 2079) associated with waste processing [40].

1.3 The Savannah River Site

The Savannah River Site near Aiken, South Carolina, contains 36 million gallons of

legacy waste from nuclear weapons production that includes 208 MCi of radioactivity as

of June 2024 [41, 42, 43, 44]. The nuclear reactions and subsequent chemical separation

processes used at the Savannah River Site have generated diverse products with myriad

physical and chemical properties. The resulting waste must be managed to reduce the risk

to humans and the environment; historic challenges with aging and leaking storage tanks

(similar to the Hanford site) have prompted immobilization of the waste at the Savannah

River Site [45, 46]:

Legacy nuclear-waste remediation efforts at the Savannah River Site consist of three

facilities: the Defense Waste Processing Facility (DWPF), the SWPF, and the Saltstone

Production Facility. A schematic of the processes are shown in Figure 1.1. The DWPF

vitrifies sludge waste (characterized by large amounts of insoluble solids) into a glass form

for long-term storage; the DWPF has been vitrifying waste since March of 1996 [43]. The
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SWPF is a chemical separation facility that takes liquid supernate composed primarily of

a sodium salt solution; removes the most radioactive soluble components to send to the

DWPF; and feeds the nearby Saltstone Production Facility, which incorporates the remain-

ing waste into a cementitious matrix. The SWPF has been processing waste since October

of 2020. Although the Savannah River Site has an established history of processing nu-

clear waste, there is renewed interest in state-of-the-art nuclear processing as the Hanford

nuclear-waste site also begins remediation [5, 6].

SWPF

DWPF

HNO3 C2H4O3

Acid AntifoamMercury
Separation Addition Addition

Sludge Receipt and
Adjustment Tank

Slurry Mix 
Evaporator

Melter 
Feed Tank
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...
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16-Stage Acid StrippingMST
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Figure 1.1: Overview of nuclear-waste processing at the Savannah River Site. Abbrevia-
tions: Defense Waste Processing Facility (DWPF), monosodium titanate (MST), and Salt
Waste Processing Facility(SWPF). Figure used from [46].
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1.4 Vibrational Spectroscopy

Vibrational spectroscopy, including Raman spectroscopy and ATR-FTIR spectroscopy,

has been a useful tool for engineers to monitor industrial processes in real-time. This

thesis investigates vibrational spectroscopy; specifically Raman spectroscopy and ATR-

FTIR spectroscopy. These two complementary techniques provide molecular information

about a solution or slurry of interest.

1.4.1 Classifying Target and Non-Target Species

When applying spectroscopy to quantify the composition of chemical components, un-

known species (i.e. adulterants, interferents, etc.) can disrupt quantification models. The

disruptive behavior of unknown species can lead to poor model robustness when analyzing

new spectra, particularly when the peaks of target and non-target species overlap. Addi-

tionally, non-target species may be prohibitively resource-intensive to calibrate for, since

common design of experiment schemes, such as full-factorial design, scale exponentially

with the number of species of interest.

In this thesis, chemical constituents are classified by whether they are quantified using

the spectra-to-concentration model. Targets are quantified species, while non-targets are

not quantified despite possibly existing in the slurry. Species may be labeled non-targets

because they are: at insignificant concentrations, not relevant for processing, or difficult to

quantify because of model and data mismatch. To deal with overlapping non-target species,

methods are introduced in Chapter 2 and Chapter 3.

1.5 Content Outline

This thesis explores PAT applied to nuclear-waste processing. Chapter 2 and Chapter 3

start by introducing the techniques of blind source separation (BSS) and nonnegatively con-

strained classical least squares (NCCLS) for monitoring multicomponent solutions where

7
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unknown spectral components appear during chemical processing. Chapter 4 and Chapter 5

add complexity to the previous chapters by adding insoluble phases to the multicomponent

solutions to yield slurries; these spectra are analyzed with linear methods in Chapter 4;

the data have nonlinear transformations applied before analysis in Chapter 5. Lastly, the

information from the previously-studied measurement models are put in the context of a

chemical process of batch reactors in Chapter 6 and Chapter 7. Chapter 6 uses a dual-

Kalman filter to combine model predictions with sensor measurements in a computational

study, and Chapter 7 uses multivariate statistical process monitoring (MSPM) to detect

faults in experimentally measured slurries. Lastly, a brief analysis of the content of thesis

is made in Chapter 8.

8



CHAPTER 2

CONSTRAINED BLIND SOURCE SEPARATION: A CASE STUDY OF THE

SAVANNAH RIVER SITE

This chapter answers a question: how can unanticipated chemical species be removed

so that target species can be accurately quantified? A blind source separation (BSS) method

was developed in the context of experimental data acquired through collaboration with Sa-

vannah River National Laboratory (SRNL). When applying existing BSS methods to the

data from SRNL, poor non-target subtraction resulted; this motivated the development of

an improved method. The method developed in this chapter makes use of prior informa-

tion of known spectroscopic signals and constrains the identification of target species to

match their known references. In applying this prior information and constraint, non-target

removal was improved.1

2.1 Introduction

The Savannah River Site, as introduced in Section 1.3, has been immobilizing nuclear

waste since 1996. The site operates the Defense Waste Processing Facility (DWPF), which

processes and vitrifies high-level radioactive waste into borosilicate glass [47, 48, 49, 50,

51]. In the DWPF, the primary chemical preparation steps occur in the Sludge Receipt and

Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME). This chapter investigates data

relevant to chemical processing in the DWPF and introduces a constrained BSS method to

handle unanticipated chemistry in an abundant process chemical, glycolate. BSS is a class

of techniques that separate a mixture signal into its source components without knowledge

of the original signals nor their mixing matrix. The proposed method improves on prior

methods by using the source separation algorithm to identify only unknown species, rather

1Much of the content and many of the figures in this chapter are reproduced from Crouse et al. [30]

9



Chapter 2. BSS at the Savannah River Site Steven H. Crouse

than all species; this is hypothesized to improve the quality of non-target removal.

The first and second steps of the proposed BSS algorithm use classical least squares

(CLS) followed by principal component analysis (PCA) to identify spectral estimates from

mixture spectra. The third and final step of the algorithm uses multivariate curve resolution

- alternating least squares (MCR-ALS) to iterate the estimates from the first two steps

and any available reference spectra into a bilinear mixture model that matches available

process spectra. The proposed BSS algorithm improves the estimation of target (quantified)

species by removing non-target (unanticipated) contributions from mixture spectra (see

Section 1.4.1 for motivation behind target and non-target species).

In the context of process monitoring, the proposed BSS algorithm may reduce the num-

ber and frequency of calibration experiments required for spectroscopic monitoring without

compromising accuracy, since non-targets may be omitted from training data. In addition,

BSS-preprocessing could facilitate real-time results in scenarios where decision-making is

time-sensitive, but process spectra deviate from training data due to unforeseen process

conditions. Ordinarily, deviations from training data require additional calibration experi-

ments and corresponding process down-time.

In this chapter, attenuated total reflectance - Fourier transform infrared (ATR-FTIR)

spectroscopy was used to quantify anions relevant to nuclear-waste processing at the Sa-

vannah River Site. An unknown spectral signature was observed in process data collected

in collaboration with SRNL. To address the appearance of this spectral signature, a novel

BSS algorithm was developed to preprocess spectral data by removing the influence of non-

target species. Additionally, the utility of ATR-FTIR measurements for real-time monitor-

ing was demonstrated in the context of nuclear-waste slurries at the Savannah River Site by

quantifying static samples and a continuous 65-hour run of scaled-down SRAT and SME

processes.

10



Chapter 2. BSS at the Savannah River Site Steven H. Crouse

2.2 Materials and Methods

2.2.1 Overview of Savannah River Site Waste

A simplified process flowsheet for the DWPF is shown in Figure 1.1 in the introduction

to this thesis. The physical and chemical composition of a representative sludge simulant

(i.e. the SRAT feed) is shown in Table 2.1, while the composition of the final processing

points (i.e. the SRAT and SME product slurries) are shown in Table 2.2. The SRAT feed

undergoes chemical preparation (acid addition) in the SRAT before receiving glass frit ad-

ditions and dewatering at the SME. Nitrate (NO−
3 ) and nitrite (NO−

2 ) were chosen as target

species for estimation because of their process relevance (see Table 2.1 and Table 2.2) and

potential for in-line monitoring. Other infrared-active species that may be present during

waste processing and labeled as non-targets are: glycolate (C2H3O
−
3 ), carbonate (CO2−

3 ),

oxalate (C2O
2−
4 ), formate (CHO−

2 ), phosphate (PO3−
4 ), and sulfate (SO2−

4 ). As demon-

strated in the following sections, glycolate spectra show deviations from available refer-

ence and training spectra, complicating glycolate quantification and motivating its label as

a non-target component. Species other than glycolate are labeled as non-targets because

of their small expected process concentrations. Known anion reactions that may occur

during the SRAT and SME processes include: nitrite destruction, nitrite-to-nitrate con-

version, glycolate destruction, glycolate-to-formate conversion, and glycolate-to-oxalate

conversion. Detailed information on the expected anion conversions is provided by Wood-

ham and coworkers [51]. Typically, anion concentrations at the Savannah River Site are

quantified with ion chromatography (IC), which is associated with approximately 10% un-

certainty and waiting times on the order of days [52]. In addition to ionic species, the

simulant also contains the following solids as detected by inductively coupled plasma -

atomic emission spectroscopy (ICP-AES): Ag, Al, Ba, Ca, Cr, Cu, Fe, Hg, K, Mg, Mn, Na,

Ni, Pd, Rh, Ru, S, Si, Zn, and Zr [51].
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Table 2.1: Simulant SRAT feed composition (i.e. expected process input), corresponding to
nonradioactive simulated Tank 40-8 measured by [51]. The wt% total solids represents the
solids that do not dissolve after heating to 110◦C, while the wt% insoluble solids represents
the difference between the measured total solids and dissolved solids.

Parameter Supernatant Target [mM]
Na+ 1010
Cl− <2.82
NO−

2 194
NO−

3 119
SO2−

4 13.7
C2O2−

4 7.00
PO3−

4 <1.05
OH− 219
CO2−

3 36.1
Parameter Slurry Target [wt%]
Insoluble Solids 8.39
Total Solids 13.90

Table 2.2: Simulant SRAT product and SME product concentrations (i.e. expected mid-
point and process output, respectively) corresponding to nonradiaoctive simulated Tank
40-8 SRAT/SME product slurries reported by [51].

Parameter SRAT Product Slurry [mM] SME Product Slurry [mM]
HCO−

2 17.1 21.4
Cl− 3.70 <3.78
NO−

2 <2.48 <2.92
NO−

3 1070 953
PO3−

4 <1.20 <1.41
SO2−

4 17.5 16.8
C2O2−

4 25.3 30.6
C2H3O−

3 906 863
CO2−

3 <6.66 25.1
NH4

+ <2.77 <2.77
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2.2.2 Design of Experiments

Nonradioactive experiments mimicking the DWPF, SRAT, and SME cycles were per-

formed in a 2-L Mettler Toledo Reaction Calorimeter (RC1) vessel equipped with tempera-

ture, pH, and ATR-FTIR probes by resesrchers at SRNL. Due to the high solids content, the

sludge waste was probed with in-situ ATR-FTIR spectroscopy, which was able to measure

infrared-active molecules in the solution phase without interference from solid particles

because of a shallow laser penetration depth of 2–3 µm [53]. ATR-FTIR-measured concen-

trations were compared to IC measured concentrations collected by the SRNL Process Sci-

ence Analytical Laboratory. Before IC measurement, samples were quenched by addition

of 50% NaOH, which has been reported to increase the accuracy of ion measurements via

IC [52]. Samples were taken from the SRAT/SME cycles at different processing points in

two separate experiments, referred to as Run 1 and Run 2. Run 1 process data correspond to

five IC measurements from a SRAT/SME experiment (Table 2.3) with corresponding ATR-

FTIR spectra. Run 2 process data correspond to three IC measurements from a SRAT/SME

experiment (Table 2.4), also with corresponding ATR-FTIR data. Run 2 has an additional

3899 spectra (collected every minute over the course of 65 hours) that do not have associ-

ated IC measurements; the spectra will be used to show real-time changes in the SRAT and

SME processes. The RC1 vessel was used to collect spectral data for model training2 (eight

experiments shown in Table 2.5), which were designed to match reported anion concentra-

tions in the SRAT/SME sludge simulant (Table 2.1) and SRAT/SME product (Table 2.2)

for the most abundant anions: nitrate, nitrite, and glycolate. Training data were collected

using sodium salts without controlling pH, so training data pHs are basic but unmeasured.

2The eight training data were collected by former Grover Group member, Stefani Kocevska while partic-
ipating in an internship at SRNL. The Run 1 and Run 2 data were collected by researchers at SRNL testing a
sludge simulant [51]. All data preparation, data analysis, and most physical data retrieval was performed by
the author of this thesis, partly while participating in an internship at SRNL.
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Table 2.3: Process data from Run 1. Anion concentrations were measured by IC for a
nonradioactive run of SRAT/SME in the RC1 experimental set-up (pH collected at 93◦C
and calibrated at 22◦C).

Sample Condition pH NO−
3 [M] NO−

2 [M] C2H3O−
3 [M]

1 SRAT feed 10.12 0.16 0.18 0.00
2 Post nitric acid addition (SRAT) 5.81 0.79 0.15 0.00
3 SRAT product 2.94 0.79 0.03 0.59
4 Post dewater (SME) 3.08 1.28 0.00 0.82
5 SME product 3.14 1.43 0.00 0.86

Table 2.4: Process data from Run 2. Anion concentrations measured by IC for a nonra-
dioactive run of SRAT/SME in the RC1 experimental set-up (pH collected at 93◦C and
calibrated at 22◦C).

Sample Condition pH NO−
3 [M] NO−

2 [M] C2H3O−
3 [M]

1 SRAT feed 10.19 0.13 0.21 0.00
2 SRAT product 3.02 1.09 0.00 0.70
3 SME product 2.89 1.67 0.00 0.92

2.2.3 pH of Collected Data

The following tables (Table 2.3, Table 2.4, and Table 2.5) show concentration and rel-

ative pH data for the experimental data used in this chapter. The pH probe used for pH

measurements was calibrated at room temperature (approximately 22◦C). However, the

training data and run data were collected at 93◦C. The temperature difference will cause

an under-approximation of pH at the elevated temperatures of the samples in Table 2.3, Ta-

ble 2.4, and Table 2.5. The pH values are included here to provide relative pH information

between measurements.
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Table 2.5: Training data for the target anions and glycolate (pH collected at 93◦C and
calibrated at 22◦C).

Sample pH NO−
3 [M] NO−

2 [M] C2H3O−
3 [M]

1 5.82 0.00 0.00 0.00
2 6.53 0.95 0.00 0.00
3 7.49 0.00 0.28 0.00
4 7.87 0.00 0.00 0.79
5 7.58 0.14 0.04 0.81
6 7.50 0.88 0.26 0.75
7 7.36 0.95 0.05 0.00
8 7.16 0.16 0.30 0.00

2.2.4 Blind Source Separation Methodology (Using Principal Component Analysis)

BSS refers to techniques that infer original or source signals solely from measurements

of signal mixtures [54]. In the context of spectroscopy and this thesis, BSS can be used to

estimate and remove the pure chemical sources that make up a signal mixture, even when

those sources are unknown. BSS has been shown by Maggioni et al. and Kocevska et al. to

be effective in preprocessing spectra to remove non-target species from Raman and ATR-

FTIR spectra in nuclear waste simulants [20, 21]. Kocevska’s BSS algorithm incorporated

available process information by augmenting mixture data to include known reference spec-

tra, thereby guiding the identification of sources by independent component analysis (ICA)

and MCR-ALS. The proposed algorithm of this chapter follows the general structure and

justification of Maggioni et al. and Kocevska et al. However, the proposed method does

not require algorithmic identification of known sources; known species are constrained to

match user-supplied references, while unknown species are found in a “blind” manner simi-

lar to Maggioni’s and Kocevska’s BSS algorithms. The new preprocessing structure allows

for available reference spectra to be directly incorporated into a BSS algorithm without

estimating them algorithmically. In Kocevska’s and Maggioni’s works, sources identified

with ICA and MCR-ALS, even well-known species, are limited in quality by the accuracy

of the BSS algorithm; found sources may not always match user-supplied references. A
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quantitative comparison of BSS methods can be found in this chapter in Section 2.3.6. The

proposed algorithm gives the user control over which components are modified and sub-

tracted by the BSS algorithm, while still identifying and subtracting unknown species that

may arise in real-time due to changing process conditions. In the context of nuclear-waste

monitoring, such an algorithm could facilitate real-time spectral preprocessing that utilizes

available references for target species, while allowing for continual removal of non-target

species that may appear or change throughout processing.

The proposed algorithm uses a combined CLS and PCA step, rather than ICA as re-

ported previously [20, 21], to provide initial guesses for MCR-ALS with a nonnegativity

constraint. CLS and PCA were chosen because they are not prone to finding local minima

(i.e. introducing rotational ambiguity [55]) compared to ICA; this may improve algorithm

consistency in an engineering environment. Deviation from a linear combination of known

sources (the error matrix from CLS fitting) is used to identify sources in the mixture spectra

that do not correspond to known species. Applying PCA to the CLS error matrix to identify

unknown sources from mixture spectra has been reported by Haaland and Melgaard, who

referred to this technique as spectral residual augmented classical least squares (SRACLS)

[56, 57]. Their method improved the prediction accuracy and robustness of CLS by iden-

tifying sources of variation not present in their training data. In this chapter, the residuals

of the CLS model fit are analyzed by PCA and then supplied to MCR-ALS to provide a

bilinear model for source subtraction. The methodological pipeline is shown in Figure 2.1.

As shown in Figure 2.1a, the first step of the BSS algorithm is the well-established

CLS relationship (Equation 2.1), which is used to model mixture spectra with all known

reference spectra (targets and non-targets) so that any additional species present can be

identified from CLS model error. Model error, in general, accounts for both measurement

noise and model mis-match. In the application of spectroscopy, one cause of model mis-

match is the presence of unknown species. Minimizing error, ECLS, in the least-squares

sense and solving for concentrations, C, is shown in Equation 2.2 [58]. The least-squares
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Figure 2.1: Methodological pipeline for the proposed BSS algorithm in three steps: a)
calculate residuals of CLS where mixture spectra (A) and reference spectra (K) are used
to find the concentration matrix (C) that minimizes (in the least-squares sense) the resid-
ual matrix (ECLS), which provides an estimate of species that do not have known refer-
ence spectra, b) perform PCA on the residual matrix (ECLS) and extract the (elementwise)
squared principal components (U), and c) perform MCR-ALS using known reference spec-
tra (K) and estimates of unknown sources from PCA (U) to identify a physically realistic
mixture model that matches the mixture spectra. After the mixture model is identified,
source subtraction can be done as is shown in Equation 2.9.

solution can be found by setting ECLS = 0 and solving for the concentration matrix, (C).

Model error can then be solved for in terms of target references, K, and process spectra,

A, by rearranging Equation 2.1 and inserting Equation 2.2, yielding Equation 2.3:

A = CK+ ECLS (2.1)

C = AKT(KKT)−1 (2.2)

ECLS = CK−A = AKT(KKT)−1K−A (2.3)

where A is an n× q matrix of mixture spectra, C is an n× p concentration matrix of pure

components, K is an p×q matrix of pure component reference spectra of the target species,
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and ECLS is an n × q matrix representing noise and error that is not modeled with linear

combinations of the known reference spectra. In this chapter, there are n experimental

observations, q is the dimension of the spectra (reported wavenumbers), and p is the number

of sources for which references exist.

The second step of the proposed BSS algorithm, shown in Figure 2.1b, applies PCA to

the residuals from the error matrix of CLS fitting, ECLS. PCA reduces the dimensionality of

data by projecting the data onto a space of reduced dimension while maximizing the vari-

ance in the projected data [59, 60]. PCA assumes that the data have been mean-centered,

meaning that the data have been mean-centered by subtracting the mean row, ĒCLS, from

each row of the original matrix. The principal components of a matrix can be found as

the eigenvectors of the matrix’s covariance matrix, Φ. Calculating the covariance matrix,

shown in Equation 3.7, and finding the associated eigenvectors, shown in Equation 3.8,

yield the principal components of PCA:

Φ =
1

n− 1
(ECLS − ĒCLS)

T(ECLS − ĒCLS) (2.4)

Φvi = λivi (2.5)

where vi is the ith eigenvector corresponding to λi, the ith eigenvalue. In the context of the

present BSS algorithm, the largest r eigenvalues are retained in addition to the correspond-

ing eigenvectors/principal components, where r is the number of expected sources beyond

to the p known references. The principal components from PCA, rather than loadings

as used by Haaland and Melgaard, are used for the algorithm introduced in this chapter

[57]. Principal components have unit scaling, whereas loadings do not, and so principal

components were chosen as “standardized” initial guesses for the subsequent MCR-ALS

algorithm. The principal components, once computed, are squared so that the spectra are

nonnegative for MCR-ALS (step three). This process is shown in Equation 2.6, where the
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elements of each principal component are squared (◦2 represents the elementwise square

or Hadamard power of a vector/matrix). This follows the methodology of Maggioni’s

two-step BSS algorithm that squares independent components from ICA (which may also

have negative components) before inputting into MCR-ALS, which has a nonnegativity

constraint applied [20]. Squaring the principal components changes the direction of the

principal components away from the directions that maximize variance, but the squared

principal components are more physically realistic since nonnegativity is implied by the

Beer-Lambert Law in spectroscopy; this trade-off is made with this algorithm.

U = V◦2 =

v◦2
1 v◦2

2 . . . v◦2
r

 (2.6)

The third step of the BSS algorithm, shown in Figure 2.1c, uses the known references

and estimated unknown sources from PCA as source estimates for MCR-ALS. MCR-ALS

is a bilinear model that decomposes mixture spectra into a concentration matrix, C, and a

reference spectra matrix, ST, as is shown in Equation 2.7 [61, 62, 63]. In Figure 2.1c, the

reference spectra are divided into known references (K) and estimated references (U) that

are the squared principal components from the PCA step. Lastly, MCR-ALS is used, as

shown in the following equation.3

A = CST + EMCR-ALS (2.7)

MCR-ALS solves the bilinear problem shown in Equation 2.7 for the contributions

(C) and component sources (ST) that comprise a mixture signal (A) [64, 65, 66]. The

alternating least-squares algorithm finds a local solution given initial conditions; for MCR-

ALS, initial guesses can be supplied for either C or ST. In this chapter, reference spectra

(ST) are supplied which MCR-ALS iterates to match the process spectra. MCR-ALS is

3ST is shown as concatenated matrices K and U in Figure 2.1. This split is shown in Equation 2.8.
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calculated with a nonnegativity constraint in this chapter to eliminate negative or physically

unrealistic spectra. The initial guess for spectra, ST
Guess is given by a vector of concatenated

columns of p known reference spectra and r spectral estimates provided by PCA. The

number of spectral estimates, r, is determined by the MCR-ALS algorithm.

The MCR-ALS step can determine the number of guesses to provide in Equation 2.8.

When given a large number of sources, the MCR-ALS algorithm may calculate some

sources to be zero at every wavenumber, which indicates that the proposed source does

not contribute significantly to the mixture spectra. The number of spectral guesses from

CLS, r, was incrementally increased until a source was calculated as zero by MCR-ALS.4

Thus, the BSS algorithm can provide a systematic way to determine the number of ad-

ditional sources to include. Other methods could be utilized to determine the number of

expected sources. Previously, singular value decomposition has been used to determine the

number of expected sources [20].

Equation 2.8 shows the initial guess provided for ST. In this chapter, a constraint

is applied to the MCR-ALS algorithm so that the target species remain identical to the

user-supplied references; this is a default functionality of the MCR-ALS algorithm from

the National Institute of Standards and Technology (NIST) and denoted by the bar (¯)

over species held constant in Equation 2.8 [66]. The constraint on target species may

be advantageous for a real-time monitoring scenario since the constraint gives the BSS

algorithm predictable behavior for the target species, improving model interpretability and

reliability. In this chapter, references are provided for NO−
3 , NO−

2 , C2H3O
−
2 , and H2O. The

MCR-ALS algorithm constrains the calculated spectra to match the user-supplied reference

spectra for NO−
3 , NO−

2 , and H2O.

4A tolerance could be prescribed for this method, but there was a clear (i.e. greater than 8 orders of
magnitude) demarcation in the data when relevant sources were no longer found.
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ST
Guess =

k̄T
NO−

3

k̄T
NO−

2

kT
C2H3O

−
2

k̄T
H2O

uT
Guess 1 uT

Guess 2 . . . uT
Guess r

 (2.8)

The MCR-ALS algorithm produces a model that is capable of decomposing the process

spectra into estimated source spectra. Subsequently, the sources corresponding to non-

targets are subtracted. In this chapter, glycolate is a non-target species and is subtracted,

along with any other detected sources. Water, while not a target, is the solvent and not

subtracted in this chapter since it does not contribute significant spectral variation between

measurements. Equation 2.9 shows the subtraction of non-target sources using the model

produced by MCR-ALS.

APreprocessed = A−



—— CC2H3O
−
2

——

—— CGuess 1 ——
...

—— CGuess r ——



ST
C2H3O

−
2

ST
Guess 1 . . . ST

Guess r


(2.9)

After source subtraction, the resulting preprocessed data can be robust to infrared-active

species outside of the training dataset and spectral changes that occur in complex mixtures.

Process implementation of BSS preprocessing can enable more accurate quantification of

target analytes. However, concurrently operating fault detection algorithms should, in gen-

eral, utilize preprocessed spectra cautiously, since the BSS preprocessing discussed in this

chapter may mask equipment failures or significant spectral changes that may be valuable

for detecting sensor or process faults. This idea is revisited in Chapter 7 where preprocess-

ing is performed prior to statistical fault detection.
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2.2.5 Quantification

Partial least squares regression (PLSR) (see Chapter B) with four latent variables was

used to estimate concentrations from all spectra in this chapter, and is performed after BSS-

preprocessing described in Section 2.2.4. Since concentration is restricted to nonnegative

values, a nonnegativity constraint is applied to all PLSR results for physical accuracy. Prior

to being input into PLSR models but following BSS-preprocessing from Section 2.2.4, all

spectra are filtered with the Savitzky-Golay method utilizing seven filter points, a second

order polynomial, and a first order derivative to reduce the effect of shifting baseline. Spec-

tra and concentrations are standard normal variate (SNV)-scaled by mean-subtraction and

scaling to unit variance immediately prior to PLSR quantification (see Chapter A in the

Appendix). More detail on PLSR quantification can be found in Chapter B.

2.2.6 Computation

Python 3.9 was used for all computation and data analysis in this chapter, with the code

and experimental dataset from this chapter published on GitHub5. The scikit-learn imple-

mentations of PLSR, PCA, and FastICA were used, while SciPy was used for Savitzky-

Golay Filtering. The NIST package, pyMCR, was used to perform MCR-ALS [66].

2.3 Results and Discussion

ATR-FTIR reference spectra of measurable solution analytes are shown in Section 2.3.1.

The ATR-FTIR spectrum of glycolate (C2H3O
−
3 ) was observed to display nonlinear peak-

shifting as a result of variable process parameters in Section 2.3.2. In Section 2.3.3, the

developed BSS algorithm was used to remove a glycolate source from spectra of Run 1

and was used to identify and remove two glycolate sources from Run 2. Lastly five spectra

from Run 1 were quantified in Section 2.3.4 and 3902 spectra from Run 2 were quantified

in Section 2.3.5.
5https://github.com/magrover/Blind Source Separation CLS.PCA.MCR-ALS
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Table 2.6: Concentrations of reference spectra shown in Figure 2.2, representative of ex-
pected process concentrations from Table 2.1 and Table 2.2. Measured pH was collected at
25◦C and calibrated at 22◦C.

Reference Formula pH Concentration [M]

Water H2O 5.93 55.494
Nitrate NO−

3 6.53 0.946
Nitrite NO−

2 7.49 0.281
Glycolate C2H3O

−
3 7.86 0.795

Carbonate CO2−
3 11.34 0.093

Sulfate SO2−
4 5.79 0.037

Formate CHO−
2 6.97 0.076

Oxalate C2O
2−
4 7.42 0.024

Phosphate PO3−
4 7.86 0.021

2.3.1 Reference Spectra

ATR-FTIR reference spectra were collected to determine spectral signatures of possible

analytes in the SRAT and SME vessels. While nitrate and nitrite represent the target species

for the slurry, the slurry may include additional anions at low concentrations (see Table 2.1

and Table 2.2). Reference data for all known infrared (IR)-active species at approximate

SRAT/SME concentrations are shown in Figure 2.2 with reference spectra concentrations

listed in Table 2.6. The target species are highly IR-active, while some of the non-target

species (such as oxalate and formate) have weak IR signals at process-relevant concentra-

tions. Since the non-target species, excluding glycolate, are not present at high concentra-

tions in the waste, it is possible that they do not significantly interfere with the signals of the

targets. The peaks of non-target species (shown in Figure 2.2b) other than glycolate were

not included as references in the BSS algorithm. Carbonate and sulfate are 2.58 and 2.70

times more concentrated, respectively, in the references of Figure 2.2b than in the typical

feed to the SRAT (Table 2.1). Carbonate, sulfate, and other non-targets were not reliably

observed in the mixture spectra, and so the BSS algorithm is tasked with identifying these

species if they are significantly present in the solution.
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Figure 2.2: Reference spectra of aqueous a) target anions (including water) and b) non-
target anions found in the DWPF waste during the SRAT and SME processes collected at
25◦C. Corresponding concentrations are listed in Table 2.6.

2.3.2 Processing Variables: Temperature and pH

Processing variables can affect ATR-FTIR signals, which affect both interpretation

and reliability of signal-to-composition models. Processing variables of interest for the

SRAT/SME process included temperature and pH. Temperature started at room temper-

ature (approximately 25◦C) but was near-boiling (approximately 93◦C) for much of the

process. Likewise, pH began at 13 and dropped to 4 through acid addition. In this section,

variations in spectra with processing parameters will be discussed to determine what non-

linearities, if any, were present in the ATR-FTIR spectra of the SRAT and SME processes.

Low-temperature (25◦C) and high-temperature (80–93◦C) 1 M reference spectra of ni-

trate (NO−
3 ), nitrite (NO−

2 ), glycolate (C2H3O
−
3 ), and glycolic acid (C2H4O3) are shown in

Figure 2.36. Nitrate, shown in Figure 2.3a, had a temperature-dependent peak shift that can

be seen on the lower-wavenumber side of the 25◦C nitrate peak. The nitrate anion (NO−
3 )

has previously been shown to display peak-shifting in the Raman spectrum resulting from

ion association [67]. In addition, temperature-dependent ion association has been demon-

strated by Yu et al. [68]. At elevated temperatures (40◦C → 80◦C) and high concentrations

6These experiments were conducted at Georgia Tech by the author of this thesis.
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of sodium nitrate, Yu et al. attributed shifts in the Raman spectrum to complex aggregated

contact ions, indicating that sodium (Na+) and nitrate (NO−
3 ) tended to aggregate at higher

temperatures. There was a decrease in the total peak area and a shifted location of the ni-

trate peak, possibly indicating affected sub-peaks for the nitrate anion. The peak location

for nitrite, glycolate, and glycolic acid all displayed subtle temperature variations with our

instrument, shown in Figure 2.3b–d. However, pH had a greater impact than temperature

on Fourier transform infrared (FTIR) spectra at the Savannah River Site.

Figure 2.3: Comparison of 1 M ATR-FTIR absorbance spectra at low and high tempera-
tures for a) nitrate (NO−

3 ), b) nitrite (NO−
2 ), c) glycolate (C2H3O

−
3 ), and d) glycolic acid

(C2H4O3).

The feed stream to the SRAT typically had a pH of 13, which decreased to a pH around

4 after the addition of both nitric acid and glycolic acid. This pH shift affected the speci-

ation of weak acids, such as glycolic acid, in the solution phase. Glycolate began SRAT

processing in a deprotonated form, due to the high solution pH, and shifted to a protonated

form as the solution pH decreased. Glycolate speciation, shown in Figure 2.4a, was calcu-

lated by using the pKa of glycolic acid and Equation 2.10. Based on values available in the

literature, a pKa value of 3.83 for glycolic acid at 25◦C was used [69].

mole fraction of protonated acid =
10−pH

10−pH + 10−pKa
(2.10)

The ATR-FTIR spectra of glycolate, after the spectra of water had been subtracted, are

shown as a function of pH in Figure 2.4b. As can be seen from the magnified region in

Figure 2.4b, the glycolate peak matched the peak seen in the training data at high pH.

As pH was lowered, another peak appeared on the higher-wavenumber side of the high-pH
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Figure 2.4: a) Protonation of glycolic acid calculated as a function of pH using a pKa of
3.83 [69] and b) reference spectra (water subtracted) for glycolate at 25◦C as a function of
pH.

glycolate peak while the original peak decreased. The result was a 15 cm−1 shift in the 1078

cm−1 glycolate peak to 1093 cm−1. The acidic form of nitrite (NO−
2 ), nitrous acid (HNO2),

is a weak acid with a pKa of 2.3 [70]. However, nitrite-destruction reactions decreased

nitrite below the limit of detection for ATR-FTIR before nitrous acid was expected to be

detectable in solution.

Since the key measurements during DWPF processing occurred at a constant temper-

ature of 93◦C, the training data for the system were collected at 93◦C and are shown in

Figure 2.5a. The process data, shown in Figure 2.5b (Run 1) and Figure 2.5c (Run 2),

were sampled during runs of the SRAT/SME cycle. The spectra baseline and the shape of

the glycolate (C2H3O
−
3 ) peak differed between the training and process spectra shown in

Figure 2.5. The effect of the variable baseline was minimized by taking the first derivative
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of the spectra using the Savitzky-Golay filter (not shown). The glycolate peaks in both

process runs deviated from that of the training data, as is shown by the magnified sections

in Figure 2.5. Specifically, the glycolate peak from Run 1 (Figure 2.5b) has a shoulder on

the higher-wavenumber side that was not present in the training data (Figure 2.5a). Run

2 (Figure 2.5c) had, by comparison to Run 1, a sharper glycolate peak that had a smaller

shoulder on the higher-wavenumber side and shoulder on the lower-wavenumber side as

well. The peak-shifting from Figure 2.4 may have accounted for much of the difference

observed between training data and process data in Figure 2.5. These changes in the glyco-

late peak location and shape may have affected a spectra-to-concentration model fit using

the training data from Figure 2.5a, where the glycolate peak was in a single location.

Figure 2.5: a) PLSR model training data, b) process data from Run 1 collected from five
different conditions in the SRAT/SME process, and c) process data from Run 2 from three
different conditions in the SRAT/SME process. The magnified region (1000-1150 cm−1)
highlights the glycolate (C2H3O

−
3 ) peak.

2.3.3 BSS Source Matching

In this chapter, nitrate and nitrite were target species to be quantified. Therefore, it

was the objective of the BSS algorithm to remove non-target species: known sources that
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deviate from training conditions (glycolate) and unknown sources with unknown spectra

(potentially oxalate, carbonate, formate, phosphate, and sulfate). While the presence and

approximate concentration ranges of non-target components may have been known, much

of their chemistry had not been fully elucidated in the complex mixtures present in the

DWPF.

The BSS algorithm proposed in Section 2.2.4 was run separately on the process spectra

from Run 1 (Figure 2.5b) and Run 2 (Figure 2.5c). The BSS algorithm was provided the

target reference spectra (including water) from Figure 2.2a and an initial guess for glycolate

from the high-pH reference in Figure 2.2b. The MCR-ALS step determined the number of

additional sources, beyond glycolate, to be zero for Run 1 and one for Run 2.

Run 1 BSS source matching is shown in Figure 2.6a, where the BSS-determined gly-

colate source (pink) was compared to the high-pH glycolate reference (dashed black) and

the mixture spectra (blue) of Run 1. BSS, particularly the MCR-ALS step, estimated the

glycolate contribution to be broader than the supplied reference, as can be seen by the pink

curve having greater peak width at the 1080 cm−1 peak than the dashed black curve. The

MCR-ALS algorithm produced this “widened” glycolate source by altering the provided

reference spectra of non-targets to match the calculated bilinear model (Equation 2.7) with

the experimental mixture spectra from Figure 2.6a (shown in blue). From Figure 2.6a, the

BSS-determined source (pink) better matched the qualitative shape of the measured (blue)

peak at 1080 cm−1 than the supplied high-pH glycolate reference (dashed black).

Run 2 BSS source matching is shown in Figure 2.6b, where continuous run data (3902

spectra) of the SRAT and SME processes were analyzed. A source (brown) was identified

in Figure 2.6b that did not match any user-input reference sources. The proposed source

resembled a baseline shift, in addition to model mismatch in the region of glycolate (1080

cm−1) and nitrate, carbonate, and glycolate (1410 cm−1). The discovered peak centered on

1410 cm−1 may have corresponded to glycolate or carbonate, both of which have associated

peaks in that location. The combined baseline and model mismatch may have demonstrated
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Figure 2.6: Comparisons between measured spectra (93◦C), high-pH glycolate reference
(25◦C), BSS-estimated glycolate reference, and a calculated source from the BSS algorithm
for a) Run 1 and b) Run 2.

a limitation of using PCA (or other latent variable methods) to identify sources; principal

components may not have a single physical interpretation and may instead be a combination

of sources. During Run 2 (Figure 2.6b), the glycolate peak (pink) was again “widened” to

match the appearance of glycolate in the mixture spectra (blue).

2.3.4 Quantification of Anions in SRAT/SME Samples (Run 1)

Figure 2.7a shows BSS preprocessing and its removal of estimated glycolate contribu-

tions from process spectra of Run 1. Peaks were subtracted in the vicinity of 1080 cm−1

and 1450 cm−1. The parity plots comparing the concentration predictions for PLSR mod-

els using either original spectra or BSS-preprocessed spectra are shown in Figure 2.7b.

Quantifiable improvements were achieved with BSS preprocessing applied and are shown

in Table 2.7. Nitrate quantification was improved from an R2 value of 0.934 to an R2 value

of 0.988 with BSS preprocessing applied to the spectra. Nitrite quantification was also im-

proved, but the quantification at process concentrations was limited for both original and

preprocessed spectra. This error was likely due to low concentration of the nitrite anion in

solution and corresponding low intensity of the nitrite peak in the FTIR spectrum. In Ta-

ble 2.7, mean percent error (MPE) was not quantified for nitrite since it had IC-measured

concentrations of zero, which caused a division-by-zero error.

Applying BSS to the process data improved the quantification of nitrate and possibly ni-
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Table 2.7: Table of error metrics corresponding to Figure 2.7b.

Original Nitrate Nitrite
Coefficient of Determination (R2) 0.934 0.605
Root Mean Squared Error (mol/L) 0.0130 0.0023
95% Confidence Interval (mol/L) 0.183 0.081
Mean Percent Error (%) 11.7 −

Preprocessed Nitrate Nitrite
Coefficient of Determination (R2) 0.988 0.661
Root Mean Squared Error (mol/L) 0.0025 0.0020
95% Confidence Interval (mol/L) 0.081 0.076
Mean Percent Error (%) 9.91 −

Figure 2.7: a) Overlay of Run 1 spectra before and after BSS-preprocessing; b) parity plot
comparing Run 1 concentration predictions for a PLSR model (blue) and PLSR model with
BSS-preprocessing applied (red).

trite while also providing visually interpretable results through peak subtraction. The peak

that was removed at 1080 cm−1 corresponded to glycolate based on process knowledge and

peak location. However, this glycolate peak had a different shape than the supplied glyco-

late reference and the spectra that appeared in the training dataset. The BSS algorithm was

able to improve the initial guess of the glycolate spectrum to better match the components

observed in the mixture spectra, which resulted in an accurate bilinear mixture model that

allowed glycolate contributions to be removed for improved model quantification.
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Table 2.8: Table of error metrics corresponding to Figure 2.8b.

Original Nitrate Nitrite
Coefficient of Determination (R2) 0.267 0.772
Root Mean Squared Error (mol/L) 0.2959 0.0022
95% Confidence Interval (mol/L) 0.831 0.074
Mean Percent Error (%) 59.4 −

Preprocessed Nitrate Nitrite
Coefficient of Determination (R2) 0.978 0.703
Root Mean Squared Error (mol/L) 0.0087 0.0029
95% Confidence Interval (mol/L) 0.139 0.084
Mean Percent Error (%) 20.2 −

2.3.5 Quantification of Anions in Continuous SRAT/SME Samples (Run 2)

Figure 2.8a shows BSS preprocessing and its removal of estimated glycolate contribu-

tions from 3902 process spectra. The parity plots comparing the concentration predictions

for PLSR models using both original spectra and BSS preprocessing are shown in Fig-

ure 2.8b. Quantifiable improvements were achieved with BSS preprocessing for nitrate

quantification. The model error is shown in Table 2.8. Nitrate quantification was improved

from an R2 value of 0.267 to an R2 value of 0.978 with BSS preprocessing applied to the

spectra. Nitrite quantification was less accurate with an initial R2 of 0.722 which decreases

to 0.703 with BSS preprocessing. A limitation of nitrite quantification results for Run 2

were that only three timepoints had corresponding IC-reported concentration values, and

two of the three timepoints reported the nitrite IC concentration at zero (measured below

100 ppm). Therefore, there was a single measurement containing nitrite for quantification

for Run 2. Nitrate, however, was present in significant amounts in all three timepoints in

Figure 2.8b.

ATR-FTIR has the capability for real-time measurements, whereas IC measurements

often incur measurement delays. Figure 2.9, which reported concentrations at every time-

point for Run 2 along with the three timepoints with IC data, highlighted the distinction

between time resolution provided by ATR-FTIR and IC for a typical SRAT/SME cycle.
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Figure 2.8: a) Overlay of 3902 process spectra from Run 2 before and after BSS prepro-
cessing; b) parity plot comparing Run 2 concentration predictions for a PLSR model (blue)
and a PLSR model with BSS preprocesssing applied (red).

Glycolate contributions were removed using BSS preprocessing in Figure 2.9a, whereas

no BSS preprocessing was applied in Figure 2.9b. In Figure 2.9a, only two species were

quantified: nitrate and nitrite. However, these two species matched the reported IC con-

centrations (denoted by the circles and triangles) more closely throughout processing than

the equivalent quantification with no preprocessing in Figure 2.9b. Most notable is the

difference in nitrate quantification, which was greatly improved when BSS preprocessing

is applied. The better agreement of BSS-preprocessed ATR-FTIR prediction with IC mea-

surements in Figure 2.9a had the drawback of not quantifying glycolate, even if Figure 2.9b

suggested that glycolate was quantified poorly given the available training data. In future

cases where it is desirable to improve quantification of nitrate and nitrite via BSS and addi-

tionally quantify glycolate, two separate models could be constructed for providing original

glycolate estimates (still including any errors of the original spectra) while improving ni-

trate and nitrite estimates through source subtraction.

Based on the results for quantifying nitrate and nitrite, ATR-FTIR was able to mea-

sure the concentration of target anions as they underwent additions and reactions in the

SRAT/SME processes. Nitrate concentration, monitored via ATR-FTIR in Figure 2.9,

sharply increased 8 hours into Run 2. The measured nitrate increase corresponded to the

addition of nitric acid in the SRAT, which indicated ATR-FTIR can verify nitric acid addi-
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Figure 2.9: Continuous SRAT and SME data (Run 2) quantified using a) BSS to remove
glycolate contributions and a PLSR quantification model and b) only a PLSR quantification
model where glycolate is quantified and not removed.

tion. Additionally the saw-tooth pattern appearing in Figure 2.9 around 40 hours into the

process corresponded to the repeated addition of water followed by dewatering. Dewater-

ing was observed as an increase in concentration as the solvent evaporates, concentrating

the remaining solution. In SRAT/SME processing, solution-phase concentration informa-

tion during the dewatering step can be used to verify that the expected mass is evaporated.

By measuring nitrate concentration, unexpected changes in heating efficiency, changes in

specific heat of the feed stream, or clogs in the vapor outlet could be detected and undergo

further troubleshooting. Similarly, the nitrite anion can be monitored to ensure that all

nitrite is destroyed through acid addition, at least to the limit that is detectable with ATR-

FTIR. In Figure 2.9b, qualitative information was provided for the glycolate anion despite

quantitative inaccuracy. The glycolate concentration was seen to sharply increase shortly

after the nitrate concentration increased. This is from the glycolic acid addition, which fol-

lowed the nitric acid addition and introduced glycolate to the SRAT. The acid additions also

lowered the solution pH to about 4, which caused some glycolate to exist in its protonated

form for the remaining duration of SRAT/SME processing.

The presence of nitrate, an abundant analyte that is active in the IR spectrum, may allow

for other nonvolatile and nonreactive solution species to be estimated with a mass-balance

during the chemical additions, dewatering process, and up until the slurry is transported to

the melter. As the final control point before the slurry is melted, close monitoring of the
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solution-phase in the SRAT and SME could accelerate and support decisions made by the

DWPF Analytical Laboratory regarding waste batch approval [47].

2.3.6 Comparison with Maggioni’s and Kocevska’s Blind Source Separation Model

A comparison was performed of the BSS method proposed by Maggioni et al. [20]

for spectra preprocessing and subsequently adapted for real-time spectra quantification by

Kocevska et al. [21]. To conduct the comparison, data from Run 2 were preprocessed and

subsequently quantified by PLSR as described in Section 7.2.6. Hyperparameters were

selected for the MCR-ALS step of both BSS algorithms. Hyperparameter tuning consisted

of a grid-search of the best regularization coefficient (α value) and L1 ratio for the elastic

net that performs the alternating-least-squares in this implementation of MCR-ALS [66].

To perform hyperparameter optimization, 755 spectra collected in the same manner as Run

1 (but without concentration information and not used elsewhere in this thesis) were used

to identify the best-performing parameters based on the five Run 1 spectra with reported

concentrations. After hyperparameter tuning, Run 2 spectra were plotted and quantified

after preprocessing from both BSS methods.

Figure 2.10: ATR-FTIR spectra from Run 2 that has been preprocessed with a) the previ-
ously reported BSS algorithm from [20] and [21] and b) the proposed BSS algorithm in
this chapter. The blue spectra in both a) and b) correspond to measured spectra with no
preprocessing.

Figure 2.10 shows the qualitative differences between the two BSS methods. The
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method of Maggioni and Kocevska, using ICA to initially find component guesses, pro-

duced spectra with a physically unrealistic appearance (even of the known targets). The

proposed method, shown in Figure 2.10b, demonstrated a less substantial alteration to the

structure of the entire spectra. This resulted in spectra that retained physical realism, es-

pecially for the target species. The proposed algorithm constrained the target species to

match their reference spectra, so only non-target species were identified and subtracted by

the BSS algorithm.

Figure 2.11: Nitrate and nitrite quantified from Run 2 using the methodology described in
Section 7.2.6 (including a first derivative Savitzky-Golay filter and PLSR quantification).
Previously reported BSS (red circles) was preprocessed with the methodology of Maggioni
[20] and Kocevska [21] while Proposed BSS (gold stars) was preprocessed with the BSS
methodology of this chapter (Section 2.2.4).

Table 2.9: Table of error metrics corresponding to Figure 2.11

Root Mean Squared Error (mol/L) Nitrate Nitrite
No Preprocessing 0.296 0.00223
Reported BSS of Maggioni et al. 0.133 0.00445
Proposed BSS of this thesis 0.047 0.00277
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Figure 2.11 and accompanying Table 2.9 quantitatively demonstrated the effect of the

BSS preprocessing in Figure 2.10. The proposed BSS methodology improved nitrate quan-

tification, outperforming both the previously reported BSS algorithm from Kocevska and

Maggioni and spectra with no BSS preprocessing.

2.3.7 Including Fewer and Additional Glycolate Sources

Additional analyses were performed to test the proposed BSS algorithm performed in

two additional scenarios. The first is when no glycolate reference is available, and the

algorithm is truly “blind.” The second is when both low- and high-pH glycolate references

are available. Results from both of these tests are shown in Table 2.10.

BSS preprocessing was performed where the algorithm had neither the low-pH nor

high-pH glycolate references available as a non-target species a priori. The algorithm was

applied to Run 1 and Run 2 identically as was done in the previous sections. The results

are displayed in Figure 2.12a, Figure 2.12b, Figure 2.13a, and Figure 2.13b. There were

subtle differences in the preprocessed spectra in Figure 2.12a (no glycolate sources) and

Figure 2.7a (high-pH glycolate source). As expected, the glycolate source identification

was not as accurate without any glycolate source information (Figure 2.12), since the source

subtraction affected a wider range of the spectrum. Removal was still effective, but did not

fully match the curvature of the observed glycolate peak. Changes were seen for Run 2

as well. The nitrate peak at 1350 cm−1 was observed to decrease more substantially in

Figure 2.13a compared to Figure 2.8a.

Table 2.10: Table of error metrics for Run 1 and Run 2 quantified with PLSR. BSS prepro-
cessing is performed with different levels of glycolate information provided a priori.

Root Mean Squared Error (mol
L

)
Run 1 Run 2

Nitrate Nitrite Nitrate Nitrite

No Preprocessing 0.0130 0.0023 0.2959 0.0022
BSS + No Glycolate Source 0.0303 0.0026 0.0272 0.0191
BSS + High-pH Glycolate Source (Section 2.3.4) 0.0025 0.0020 0.0087 0.0029
BSS + High- and Low-pH Glycolate Sources 0.0021 0.0022 0.0036 0.0019
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Figure 2.12: Run 1 BSS preprocessed with (a, b) no glycolate references included and (c,
d) both high- and low-pH glycolate references included.

BSS preprocessing was performed where the algorithm additionally had a low-pH gly-

colate reference available in addition to the high-pH glycolate reference included as a non-

target species. The algorithm was applied to Run 1 and Run 2 identically to Section 2.2.4,

except for Run 1 where the regularization in MCR-ALS was decreased by a factor of 10 to

improve algorithm convergence. The convergence issue may have arisen because an extra

source was included (for six total) with the small dataset used in Run 1 (eight training data

and five testing data). The results are displayed in Figure 2.12c, Figure 2.12d, Figure 2.13c,

and Figure 2.13d. There were subtle differences in the preprocessed spectra in Figure 2.12c

and Figure 2.7a. There was more noticeable removal in the area of the nitrite peak at 1250

cm−1, corresponding to the glycolate reference for low pH. Therefore, the low-pH source

was more effectively incorporated into BSS preprocessing when it was provided as a refer-

ence source. In addition, the glycolate removal at 1080 cm−1 was effective but resulted in a

preprocessed spectrum with different curvature. The curvature was indicative of subtracted
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Figure 2.13: Run 2 BSS preprocessed with (a, b) no glycolate references included and (c,
d) both high- and low-pH glycolate references included.

glycolate peaks that were sharper than that shown previously in this chapter (Section 2.3.4

and Section 2.3.5). Figure 2.13c (both high- and low-pH glycolate sources) did not show

any different trends than that of Figure 2.8a (high-pH glycolate source). However, the

quantification was slightly better as measured by root mean squared error (RMSE) with

both sources included, as shown in Table 2.10.

2.4 Conclusion

The work of this chapter serves as both a proof of concept on the use of ATR-FTIR

spectroscopy for monitoring slurry samples at the Savannah River Site and an example of a

novel BSS algorithm for improving quantification of complex mixture spectra. ATR-FTIR

spectroscopy performs rapid process measurements compared to typical IC sample analy-

sis, enabling real-time monitoring and decision-making. However, the complex chemistry

and variable process parameters in vessels at the Savannah River Site necessitate ATR-
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FTIR spectra-to-composition models that are robust to changing chemical and process con-

ditions. In this chapter, measured ATR-FTIR spectra were combined with a BSS algorithm

to overcome limited training spectra that do not match process spectra. Specifically, the

glycolate anion (C2H3O
−
3 ) was observed to change spectroscopic behavior in slurries typi-

cal of the Savannah River Site, which was attributed to shifting pH from nitric and glycolic

acid additions during processing. To address the behavior of the glycolate anion in future

Savannah River Site monitoring tasks, a spectroscopic training set may be constructed that

probes the full range of process-relevant pH’s so that acidic and basic forms of glycolate

are included in spectroscopic training data.

The concentrations of target species, nitrate (NO−
3 ) and nitrite (NO−

2 ), were predicted

by PLSR using both raw and BSS-preprocessed spectra. For two different runs of the

SRAT/SME processes, nitrate quantification improved from an R2 of 0.934 to 0.988 and

from 0.267 to 0.978 when subtracting overlapping BSS-estimated glycolate peaks from

measured spectra. BSS preprocessing may be useful even when reference spectra are avail-

able, since process conditions can stray from well-controlled bounds where quantification

models are typically designed, impacting the spectral signatures of key species. Beyond

nuclear-waste processing, applications of the presently discussed BSS technique may be

found in instances where spectral quantification of complex mixture spectra is necessary,

but process information is limited a priori or process conditions vary.
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CHAPTER 3

FEATURE SELECTION USING NONNEGATIVELY CONSTRAINED

CLASSICAL LEAST SQUARES

This chapter deals with the issue raised by the case study presented in the last chapter

(Chapter 2): how can unanticipated chemical species be removed so that target species

can be accurately quantified? The method of this chapter, in contrast to Chapter 2, is

adept at removing non-target components in real-time. Methods exist in the literature (and

the prior chapter) that are able to accomplish this task. However, no existing methods

are able to accurately remove non-target contributions from spectra with a single process

spectrum; this is highlighted in Figure 3.9 in this chapter. To address this, a new method

is introduced called nonnegatively constrained classical least squares (NCCLS) that is able

to accurately remove non-target contributions with nothing other than reference spectra of

target species, estimation of sensor error, and an assumption that non-target species have

spectral nonnegativity.1

3.1 Introduction

Unknown chemical species (i.e. non-targets, adulterants, interferents, etc.) can dis-

rupt quantification models when applying spectroscopy to monitor industrial processes.

Methods exist for identifying and removing non-target spectral sources so that a regression

model can accurately quantify spectra with non-target spectral contributions.

Using a model for a new task outside of the domain of its training data is referred to in

the broader machine learning literature as transfer learning. Transfer learning is a broad

class of techniques that allow for models or algorithms trained on one set of data to be

effectively applied to another set of data that may violate the common assumption of inde-

1Much of the content and many of the figures in this chapter are reproduced from Crouse et al. [71]
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pendent and identically distributed (i.i.d.) data between training and application datasets. In

the context of industrial spectroscopy, this includes using lab-created spectroscopic datasets

to quantify a process that may have changing conditions or product requirements. Using

the transfer learning classes distinguished by Pan et al., different model training and appli-

cation domains correspond to transductive transfer learning [72]. In transductive transfer

learning, the training and application goal is the same (regression of target species), while

the domains may be different (the presence of non-target components). In the spectroscopic

literature, this type of problem has seen substantial work, although not always under the

guise of transfer learning. Haaland et al. developed spectral residual augmented classical

least squares (SRACLS) to increase spectroscopic quantification accuracy when unmod-

eled components are included in measured spectra [57, 56, 73]. In SRACLS, references for

unknown sources are first estimated and then included in a classical least squares (CLS) pre-

diction scheme [74, 75]. More recently, work by Maggioni et al. and Kocevska et al. used

blind source separation (BSS) algorithms to identify and remove non-target species from

spectra [20, 21], which were improved in the prior chapter (Chapter 2). Neural networks

have also been applied to “denoising,” where spectra have been processed via autoencoders

[76, 77, 78, 79].

In this chapter, the removal of non-target species from spectra is referred to as prepro-

cessing. This definition of preprocessing is distinct from other processing steps that spectra

may undergo prior to quantification such as scaling or baseline correction. The preprocess-

ing methods introduced in the previous paragraph have primarily been examined in batch

processing scenarios, which here refers to multiple spectra being analyzed simultaneously.

Batch processing contrasts with the potentially industrially relevant scenario of real-time

processing, where a single spectrum containing non-target species must be preprocessed

for timely decision-making. Preprocessing to remove unwanted spectral signals can be

demonstrated by CLS, a physically insightful projection method.

CLS begins by projecting typically high-dimensional spectroscopy data into a space
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Figure 3.1: The methods investigated in this chapter consist of a transformation to a low-
rank space, feature selection or an applied constraint, and then an inverse transformation.
Reconstruction error from the low-rank approximation may remove non-target species.

of typically low-dimensional concentrations. The high-dimensional spectroscopy data can

then be reconstructed from the low-dimensional, concentration representation. Using CLS,

non-target species are likely to be removed because the projected space (concentrations of

target species) has fewer degrees of freedom that capture information of only the target

species, since reference spectra are typically only available for target species. All of the

methods studied in this chapter operate on a similar principle of transforming data to a

low-dimensional representation, possibly selecting or constraining a subset of features in

the reduced space (this was not done in the CLS example), and then reconstructing the

high-dimensional spectra from the low-dimensional representation.

A limitation of using CLS for preprocessing is that the least squares solution may not

always correspond to a physically realistic solution when non-target species are present.

Some constraints have been used in spectroscopic analysis that produce more meaningful

results: nonnegativity of concentrations and unimodality, among others. Baek et al. used
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a linear programming constraint on spectra to predict the varying baseline of spectra [80].

Hyperspectral images have been analyzed using nonnegative abundance constraints [81,

82]. Iterative optimization technology (IOT) has been applied in the pharmaceutical indus-

try so that mixture constraints, such as mole fraction summation to unity and upper- and

lower-bounds on variables, are satisfied [83, 84, 85]. The works on IOT have addition-

ally used an extended Beer-Lambert Law to model spectroscopically-active mixtures with

non-target species (as well as other factors) present.

In addition to constraining concentrations to be nonnegative as has been done else-

where, a nonnegativity constraint for non-target species spectral contributions is proposed

in this chapter for removing overlapping non-target peaks and producing physically realis-

tic spectra based on a linearity assumption (i.e. the Beer-Lambert law in absorbance spec-

troscopy). The resulting NCCLS model can operate in real-time and is adept at preprocess-

ing spectra with unknown species present. Additionally, NCCLS does not require any prior

information about the unknown species aside from their adherence to physically-motivated

nonnegative spectral contributions. The preprocessing algorithm is a constrained minimiza-

tion problem with a quadratic (least-squares) objective function and two linear constraints:

nonnegative concentrations and nonnegative non-target spectral contributions. NCCLS

does not require estimates of unknown component spectra nor multiple time-series mea-

surements to operate. NCCLS may have bearing on many industrial and field-monitoring

spectroscopic tasks where non-target species are present.

To the author’s knowledge, the application of a nonnegative constraint on unknown

non-target species spectral contribution for the purpose of preprocessing mixture spectra

has not been previously reported. In this study, both in silico and experimental Raman and

attenuated total reflectance - Fourier transform infrared (ATR-FTIR) spectra are prepro-

cessed in batch and real-time monitoring scenarios to remove non-target peak contributions

and the spectra are subsequently quantified using partial least squares regression (PLSR).

Preprocessing to remove non-target species is achieved by the novel NCCLS method and
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additionally five spectra preprocessing methods based on methods existing in the litera-

ture: principal component analysis (PCA), SRACLS, a convolutional denoising autoen-

coder (CDAE), and two BSS methods that are distinguished by their use of independent

component analysis (ICA) or PCA2 as a feature identification step, followed by multivari-

ate curve resolution - alternating least squares (MCR-ALS). With the in silico spectra, the

amount of non-target peak overlap, noise, and test data are varied and the performance of

the preprocessing methods is reported. Finally, experimental Raman and ATR-FTIR train-

ing spectra of aqueous sodium salts are collected and used to quantify a previously reported

dataset of spectra containing four additional non-target species not present in the training

data.

3.2 Spectra Preprocessing Methods for Non-Target Removal

The following sections describe the use of preprocessing methods for spectroscopy to

deal with overlapping target and non-target peaks. The following notation is used for the

spectroscopic systems studied in this chapter: there are n training experiments, m testing

experiments3, r target species, s non-target species, and w wavenumbers. An accent over a

variable, ◦́, corresponds to training data, while the absence of an accent, ◦, corresponds to

test data. A hat above a variable, ◦̂, corresponds to an estimated quantity (i.e. concentration

data estimated from mixture data). The first method described is NCCLS, the method

introduced in this chapter.

3.2.1 Nonnegatively Constrained Classical Least Squares (NCCLS)

NCCLS has use in real-time spectral analysis because of its accuracy, intuitive behav-

ior, requirement of only a single measurement spectra, and low computational cost. This

method is agnostic to the type of spectral interferents (except the requirement that they

2BSS PCA is the method introduced in Chapter 2 of this thesis, while BSS ICA is the method introduced
by Maggioni et al. and Kocevska et al. [20, 21].

3Testing data in this study are distinguished from training data by the inclusion of non-target species.

44



Chapter 3. Nonnegatively Constrained Classical Least Squares Steven H. Crouse

have nonnegative spectral contributions), making the method well-suited to maintaining

accurate quantification in systems that deviate from calibration data. NCCLS also assumes

target species follow a linear relationship between concentrations and spectra (i.e. the Beer-

Lambert Law). Lastly, it is assumed that measurement noise from the sensor itself can be

estimated and is indicative of measurement noise expected for future samples.

Classical Least Squares and Unknown Mixture Components

CLS is a well-studied model where mixture spectra are linear combinations of reference

spectra. The CLS model is motivated by the structure of the Beer-Lambert Law (in the case

of absorbance spectroscopy) and can be used to quantify spectra in single-phase solutions

with low analyte concentration. The CLS model is

A = CK+ EA (3.1)

where A ∈ Rm×w is a matrix of mixture spectra, C ∈ Rr×m is a matrix of concentrations,

K ∈ Rr×w is a matrix of reference spectra, and EA ∈ Rm×w is a matrix of model error.

To solve for unknown concentrations, Ĉ, the least-squares minimization problem can

be solved with respect to concentrations, Ĉ. This unconstrained minimization problem is

min
Ĉ

||A− ĈK||2F (3.2)

where ||·||2F is the squared Frobenius or Euclidean norm of a matrix. A constraint to the

minimization problem of Equation 3.2 will be introduced that improves CLS fitting when

non-target species are present.

To model the case when additional species (non-targets) are present in a mixture to be

quantified, Cu and Ku can be included in Equation 6.27, as is shown in the same form by

Saeys et al. [86] but has been shown by other authors as well [87, 88, 84, 73]:

45



Chapter 3. Nonnegatively Constrained Classical Least Squares Steven H. Crouse

A = CK+CuKu + EA (3.3)

where Cu ∈ Rm×s and Ku ∈ Rs×w are the concentration and pure-component reference

matrices, respectively, of additional species that are unknown to the CLS model based on

available reference spectra. In the cited works for Equation 3.3, the quantity CuKu is

estimated so that it can be subtracted. The contribution of this chapter is using physical

assumptions of Cu and Ku to motivate a spectra preprocessing algorithm where Cu and

Ku do not need to be estimated. Assuming Equation 3.3 represents the spectroscopic sys-

tem to be quantified and the Beer-Lambert Law (or related linearity assumption) applies,

then physical constraints dictate that every element of Cu and Ku are nonnegative. The

Beer-Lambert law prohibits nonnegative concentrations and nonnegative absorptivity, with

analogous statements preventing a nonnegative calibration matrix for Raman spectroscopy

[89, 90]. From the matrix multiplication of two nonnegative matrices, every element in the

resulting matrix of non-target species will be nonnegative. Therefore,

CuKu ≥ 0 (3.4)

where 0 is an m × w null matrix and ≥ represents an element-wise inequality. Inserting

this inequality into Equation 3.3 yields

CK−A+ EA ≤ 0 (3.5)

Physically, the constraint in Equation 3.5 ensures that CLS-fit spectra of target species

(CK) is less than the mixture spectra (A) while accounting for experimental error (EA).

In practice, enforcing this constraint may prevent the least-squares solution of target species

from capturing contributions of non-target species. Unlike the unconstrained minimization

problem of Equation 3.2, an estimate of instrument error, EA, must be provided to use the
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constraint of Equation 3.5 on real systems. The distribution of EA can be estimated from

training data, as is shown in Section 3.2.1.

Gaussian Error

Noisy Measurement

A

True Signal

(Unknown)

Least-Squares Fit Satisfying

CK ≤ A

Least-Squares Fit Satisfying

CK ≤ A - ÊA

EA

Approximate EA as ÊA

Figure 3.2: Measurement noise must be estimated (ÊA) to use the NCCLS constraint ac-
curately (Equation 3.5). Without accounting for measurement error, EA, least-squares fit
spectra will be offset from the true spectra by the largest positive residual in the spectrum
(the red “×” in the figure).

To use Equation 3.5 as a constraint to a least squares minimization problem, EA must

be estimated (ÊA) as shown in Figure 3.2. Different mechanisms exist for estimating and

incorporating error into constraints like that seen in Equation 3.5 [91]. In this chapter, EA

is approximated via a probabilistic approach by assuming that measurement error of the

training data and measurement error of the test data are taken from the same Gaussian dis-

tribution; the error for the training data and test data are i.i.d.. The standard deviation is

found of the residuals of training data (ÉA). Then, a confidence interval is chosen based

on the standard deviation of training data to determine ÊA. In this chapter, the confidence

interval is selected based on an analytical expression shown in Chapter C. The assumption

of i.i.d. and Gaussian error may be relaxed by using other distributions or a separate distri-

bution for each wavenumber, in the case of a wavenumber-dependent error. Additionally,

the magnitude of EA can be reduced through filtering or averaging spectra.
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NCCLS

The quadratic programming problem of NCCLS is

min
Ĉ

||A− ĈK||2F

s.t. ĈK−A+ ÊA ≤ 0

Ĉ ≥ 0

(3.6)

Equation 3.6 has an identical objective function to the unconstrained least-squares opti-

mization shown in Equation 3.2, but with the additional constraint of nonnegative non-

target spectral contributions introduced in Equation 3.5 and a nonnegative concentration

constraint. The objective is constrained so that the least squares spectra fit, ĈK, is always

less than or equal to the true mixture spectra, A, and the expected uncertain region of mea-

surement error, ÊA. The reconstructed nonnegatively constrained CLS spectra will have a

least squares fit except in locations where non-target species, CuKu, are present and the

constraint is enforced. Where non-target species (CuKu) do appear, their spectral contribu-

tions will be removed from reconstructed spectra by enforcing nonnegativity of non-targets

species (refer to Equation 3.4 and Equation 3.5). With the new NCCLS method introduced,

the comparison methods for this chapter will now be described.

3.2.2 Principal Component Analysis (PCA)

PCA is an unsupervised feature reduction method that reduces the dimensionality of

data by projecting it onto a space of lower dimension while maximizing the variance in

the projected data [92, 93]. In the context of spectral preprocessing, test data can be trans-

formed into the reduced-dimension space found by performing PCA on training data. This

highlights features of the test data that match high-variance components of the training

data (i.e. where spectral peaks in the training data exist). Transforming the projected test

data back into its original space using only select (usually the first few) principal compo-
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nents will yield preprocessed spectra that have only contributions in directions given by the

principal components of the training data, thereby eliminating contributions of non-target

species that are not in the directions of the principal components [59, 60].

PCA preprocessing is performed through several steps. First, the covariance matrix

(Φ) is found from mean-subtracted training spectra (Atrain). The eigenvalues (λi) and

eigenvectors (vi) are found of the covariance matrix, and sorted based on the magnitude

of the eigenvalues. The largest r eigenvalues (along with their eigenvectors) are kept,

where r is the number of target species (or the minimum number of principal components

that can accurately describe the training data). The retained eigenvectors are the principal

components of PCA, and provide a pathway to transform additional data into this reduced

space.

Φ́ =
1

n− 1
(Á− ´̄A)T(Á− ´̄A) (3.7)

Φ́v́T
i = λiv́

T
i (3.8)

where ´̄A ∈ Rn×w is a matrix of the mean training spectrum, ´̄a ∈ R1×w, stacked n times.

In order to maintain consistency with matrix representation in the spectroscopic liter-

ature and the other methods used in this chapter, A is a matrix of spectra represented by

row vectors, aj , and VT is a matrix of right eigenvectors represented by column vectors,

vT
i . Reconstructing a single spectra (ãj) can be accomplished with Equation 3.11 using the

principal components found from training data (v́1) and the mean spectrum (´̄a).

A =



—— a1 ——

—— a2 ——
...

—— am ——


(3.9)
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V́T =

v́T
1 v́T

2 . . . v́T
r

 (3.10)

ãj = ā+
r∑

i=1

(ajv́
T
i − āv́T

i )v́i (3.11)

ÃPCA =



—— ã1 ——

—— ã2 ——
...

—— ãm ——


(3.12)

In practice, Equation 3.7 through Equation 3.12 can be implemented through matrix

operations or using an available PCA package, such as is available from scikit-learn.

3.2.3 Spectral Residual Augmented Classical Least Squares (SRACLS)

SRACLS is ordinarily a quantification model similar to classical least squares, except

that available reference spectra are augmented by additional sources found through a factor

analysis (PCA is used here) of residual spectra [57]. In this chapter, SRACLS is adapted

to be a preprocessing algorithm rather than a spectra quantification method. To perform

SRACLS, the residual spectra from classical least squares fitting on test data have PCA per-

formed on them. In contrast to PCA preprocessing (Section 3.2.2), the PCA of SRACLS is

performed on the error matrix of CLS fitting the test data, EA, rather than the training data,

Á. The similar structure of SRACLS and CLS suggests that SRACLS behaves similarly

to unconstrained CLS. Therefore, SRACLS is a control experiment for NCCLS without a

nonnegative spectral contributions constraint.

To perform SRACLS, the eigenvectors from PCA (vTi ) are used to supplement available

reference spectra. This is shown by the augmented reference spectra matrix, shown in
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Equation 3.16.

EA = A−CK (3.13)

Φ =
1

n− 1
(EA − ĒA)

T(EA − ĒA) (3.14)

ΦEA
vT
i = λiv

T
i (3.15)

K =



—— k1 ——

—— k2 ——
...

—— kr ——


, Kaug =



—— k1 ——

—— k2 ——
...

—— kr ——

—— v1 ——

—— v2 ——
...

—— vs ——



(3.16)

After augmenting classical least squares with eigenvectors from PCA (Equation 3.16)

concentration (Ĉ) values can be found using Kaug and the CLS relationship giving Equa-

tion 3.17:

Ĉ = AKT
aug(KaugK

T
aug)

−1 = A(Kaug)
† (3.17)

If desiring quantitation from SRACLS, as was shown by Haaland and Melgaard, the

first r rows from Ĉprocess (Equation 3.17) will yield estimated concentrations of target

species [73]. However, SRACLS can be adjusted slightly to create a spectra prepro-

cessing algorithm. Replacing rows r + 1 through r + s with 0 vectors yields the corre-

sponding SRACLS estimated spectra without contributions of estimated non-target species,

Ĉpreprocessed ∈ Rr×m. This is shown in Equation 3.18. Lastly, the final preprocessed spec-

tra can be found by matrix multiplication between Ĉpreprocessed and the original reference
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spectra, K. Note that Kaug is not necessary for the final preprocessing step, but is an inter-

mediate for calculating Ĉpreprocessed if quantification, rather than preprocessing, is desired.

 Ĉpreprocessed 0r×s

0s×r 0s×s

 =

 Ir×r 0r×s

0s×r 0s×s

 Ĉ (3.18)

ÃSRACLS = ĈpreprocessedK (3.19)

3.2.4 Blind Source Separation (BSS)

BSS refers to a series of techniques that estimate pure component source signals and

amplitudes (concentrations in this context) from mixture spectra alone [20, 54, 94]. These

techniques have been applied to vibrational spectroscopy problems using MCR-ALS with

constraints applied, such as nonnegativity of sources and concentrations [20, 21, 30]. Be-

cause of the nonnegativity constraint, MCR-ALS is a subset of a broader class of non-

negative matrix factorization. The different implementations for MCR-ALS arise from the

requirement of initial guesses for either concentrations or reference spectra. Reference

spectra for target species are often readily available in spectroscopic contexts, but accurate

reference spectra for non-target species may not always be available. Thus, data-driven

methods have been used to identify reference spectra from spectra alone for use as initial

guesses for the MCR-ALS algorithm.

Details of how to apply BSS to spectroscopic data exist elsewhere, with references

for BSS with ICA identifying sources found in Maggioni et al. [20] and Kocevska et al.

[21]. BSS with PCA identifying sources can be found in Crouse et al. [30] as well as in

Section 2.2.4 of this thesis.

MCR-ALS is the underlying algorithm used in BSS algorithms in the spectroscopic

literature:

A = CMCRSMCR + EMCR (3.20)
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where A is a matrix of mixture spectra as previously defined, CMCR ∈ Rn×(s+r) is a matrix

of latent “concentrations” with s + r (sum of target and non-target species) latent vari-

ables, and SMCR ∈ R(s+r)×w is a matrix of latent variable “spectra”. Notably, MCR-ALS

(Equation 3.20) is similar to CLS, except that CMCR-ALS and SMCR-ALS correspond to latent

variables rather than physical reference spectra and concentrations.

Once CMCR-ALS and SMCR-ALS are fit to mixture data, feature selection of peaks that

overlap in the original domain become possible in the space of latent concentrations (CMCR-ALS).

One of the challenges of BSS is identifying which features (sources) to subtract. Methods

that have been explored in the literature include matching latent sources and reference

spectra via correlation [20, 21] and constraining MCR-ALS to match reference spectra

[30]. After feature selection in the latent concentration space (CMCR-ALS) has reduced the

r + s dimensional space down to r, the final preprocessing equation is

ÃBSS
preprocessed = Ĉr

MCRŜ
r
MCR (3.21)

Latent variables corresponding to non-target species are not included in the recreation of

the mixture spectra (ÃBSS
preprocessed) and so are effectively removed from spectra.

3.2.5 Convolutional Denoising Autoencoder (CDAE)

Artificial neural networks have been used for vibrational spectral analysis abundantly in

the literature [95, 96, 97, 76, 98]. Autoencoders use a type of neural network architecture

that is particularly suited for feature reduction and extraction. An autoencoder is similar to

PCA in that it maps data from its original space into a low-dimensional latent space and

then back into the original space. The ability of neural networks to map arbitrary, nonlinear

functions has been well-documented [99]. However, neural networks typically have a large

number of parameters that are time- and data-intensive to train, which may preclude them

from some spectroscopy tasks. However, because of their prevalence in current literature,
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a CDAE architecture is included in this chapter.

A CDAE framework is chosen based loosely on the CDAE used by Fan et al. because

of the similar application of denoising autoencoders [76]. Whereas Fan et al. used a CDAE

for removing noise, it is used in this chapter to remove unknown species. The CDAE

network of this chapter begins by standard-scaling data. There are three one-dimensional

convolutional layers each followed by a rectified linear unit (ReLU) activation layer and a

one-dimensional max-pooling layer. Following the last max-pooling layer, there are three

additional convolutional layers that are preceeded by ReLU activation layers which are

further preceeded by up-sampling layers. This creates a dimensional “bottleneck” structure

that is typical of autoencoders. The last layer is a densely connected layer with a linear

activation function with size equal to the dimension of the input spectra. The number of

nodes (given a 1000-wavenumber spectra input) follows the following structure: 1000 →

500 → 250 → 125 before up-sampling back into the original dimension: 125 → 250 →

500 → 1000. The smallest layer in the CDAE is a reduced-dimension space that learns a

condensed representation of the original features that describe the training data. Therefore,

the CDAE is designed to only recreate features that are present in the training data, thereby

removing contributions of non-target species.

Hyperparameter tuning for the CDAE in this chapter was performed with 35 training

spectra and 15 validation spectra, all with only target species contributions. The entire

CDAE contained 189,928 parameters for Computational Studies 1 and 2, 86,920 parame-

ters for experimental Raman spectra, and 71,320 parameters for experimental ATR-FTIR

spectra. The author acknowledges that there are many more parameters than data in this

case; this is a feature of the study and the same data are used by all methods in this chapter.

The goal of a CDAE is to map the input back to itself, or to solve minimization prob-

lem of Equation 3.22 where θ are the parameters of the CDAE and f(A;θ) is a function

representing the output of the CDAE as a function of mixture spectra (A) and dependent

on parameters (θ) [60]. After optimization, the trained CDAE can be applied as shown in
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Equation 3.23:

min
θ̂

||A− f(A; θ̂)||22 (3.22)

ÃAE
preprocessed = f(A; θ̂) (3.23)

3.3 Materials and Methods

The feature selection of NCCLS was compared with other available preprocessing

methods in this chapter. Figure 3.3 shows the information flow for all experiments con-

ducted. Spectra underwent a signal-to-noise ratio (SNR) based feature selection scheme

that removed features (wavenumbers) from training and test spectra that had an SNR less

than 10 at that feature. Preprocessing (non-target removal) occured after feature selection

and consisted of one of PCA, SRACLS, CDAE, NCCLS, BSS ICA, or BSS PCA. After

preprocessing (non-target removal), the spectra was scaled so that each feature had zero

mean and unit variance (shown in Equation A.3) before being quantified by a PLSR model

trained on data that also had the same feature selection and scaling applied. See Chapter B

for additional detail on PLSR models.

Standard normal variate (SNV) scaling was prior to all PLSR quantification but after all

preprocessing methods (the preprocessing methods are applied to the spectra with feature

selection applied). More detail on SNV scaling can be found in Chapter A.

3.3.1 Computational Experiments

Two computational studies were performed to compare the six preprocessing methods

studied in this chapter. In silico data were generated using Gaussian curves and additive

white noise. The reference spectra were calculated assuming a Gaussian peak using:

fi(λ) = CIe
−(λ−λ̄i)

2

2σ2
i (3.24)

where λ was the domain of the spectra (wavenumber), I was the maximum reference in-
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𝑥 − 𝜇 

𝜎

a)

b)

c)

d)

e)

Figure 3.3: Information flowchart for quantification used in all studies in this chapter.
The process begins with a) test spectra that b) undergo feature selection where features
(wavenumbers) with SNR of target species greater than 10 are selected, then c) the prepro-
cessing methods discussed in this chapter are employed (PCA, SRACLS, CDAE, NCCLS,
BSS ICA, and BSS PCA), then d) features are SNV scaled by subtracting the mean of each
feature and dividing by that feature’s standard deviation, then e) a trained PLSR model is
used to predict output concentrations.

tensity (at 1 M for this study), λ̄i was the center of peak i (cm−1), and σi was the standard

deviation describing the width of peak i.

After computational references have been created, the training and testing concentra-

tion data were created by using Latin hypercube sampling. The dimension of the Latin

hypercube for constructing the training data is r (the number of target species) and the
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dimension of the Latin hypercube for constructing the testing data is r + s (the number

of target and non-target species). The concentration data were then used to create linear

superpositions of the reference spectra to create mixture spectra. Training data are created

using Equation 3.25 and testing data are created using Equation 3.26.

Ftraining(λ) =
r∑

i=1

fi(λ) + v(σ) (3.25)

Ftesting(λ) =
r+s∑
i=1

fi(λ) + v(σ) (3.26)

Computational Study 1 compares the different preprocessing methods in two idealized

scenarios distinguished by batch preprocessing vs. real-time preprocessing. Computational

Study 2 modifies the scenario of Computational Study 1 with batch preprocessing by chang-

ing the amount of non-target overlap, the amount of measurement noise, and the number of

testing data. The methods are compared on a basis of root mean squared error (RMSE) of

test data predictions, which is

RMSE =

√√√√ 1

mr

m∑
i=1

r∑
j=1

(Cij − Ĉij)2 (3.27)

For all computational experiments, there were three target species and a single non-

target species, all with dimensionless maximum peak heights of one. Computationally-

generated spectra had an arbitrary x-axis ranging from 0 – 1000 referred to as wavenumbers

in this chapter to match vibrational spectra. The amount of non-target peak overlap was

quantified from the normalized target and normalized non-target references. A quantitative

measure of peak overlap was produced by dividing the area of the peak overlap by the

target peak area. By this measure, two non-overlapping peaks have 0% overlap, while two

identical peaks (in mean, width, and shape) have 100% overlap. Percent overlap is shown
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in Equation 3.28, which was calculated numerically using a trapezoid integration scheme.

% Overlap =
Overlapping Area

Target Area
=

∫∞
−∞ min(ftarget(λ), fnontarget(λ))dλ∫∞

−∞ ftarget(λ)dλ
×100% (3.28)

Computational Study 1

For Computational Study 1, 35 computational spectra were created as training data and

15 computational spectra were created as test data. Each training and test spectrum was

a sum of three target reference spectra multiplied by pseudorandom concentrations taken

from a non-centered Latin hypercube sampling scheme. The test spectra additionally have a

non-target species peak added at concentrations determined by another non-centered Latin

hypercube sampling scheme. An additive Gaussian noise was added to all training, refer-

ence, and test spectra that was defined by a standard deviation of 0.2% of the maximum

peak height of the references. The target and non-target reference spectra for Computa-

tional Study 1 are shown in Figure 3.4 with details of the experiment listed in Table 3.1.

With the non-target species centered at 560 cm-1 and the next closest target species (Target

2) centered at 600 cm-1, there was 31.7% peak overlap.

The test spectra for Computational Study 1 were analyzed using a batch preprocessing

methodology and a real-time preprocessing methodology. Batch preprocessing emulated

historical data analysis so that all of the test spectra were analyzed at once; each experiment

had 35 training data and 15 test data. Real-time preprocessing emulated time- or data-

limited analysis so that each test spectrum was analyzed individually; each experiment had

35 training data and one test spectrum but preprocessing was repeated for 15 individual test

spectra so that the same exact data were preprocessed and quantified using both batch and

real-time preprocessing methodologies.
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Table 3.1: Values used to create the in silico data in Computational Studies 1 and 2. Boxed
values are parameters varied in Computational Study 2. SD refers to standard deviation.

Peak Property Target 1 Target 2 Target 3 Non-Target
Maximum Intensity 1 1 1 1
Mean 300 600 650 560
SD (Peak Width) 10 20 15 20
Spectrum Property Value
Training Spectra 35
Testing Spectra 15

SD (Noise) 0.002
Wavenumber Range 0–1000

0 200 400 600 800 1000
Wavenumber (cm 1)

0.0
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0.6

0.8
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Target 1
Target 2
Target 3
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Figure 3.4: References for Computational Study 1 and Computational Study 2. The non-
target species is included only in test data. The goal of the preprocessing methods is to
remove the non-target species without prior information of the non-target species.

Computational Study 2

Computational Study 2 is identical to Computational Study 1 with a batch preprocess-

ing methodology except five replicates (compared to one) are performed with different

initialization states and the system is adjusted along three axes shown in Figure 3.5 and

Table 3.1 (the boxed quantities): the amount of non-target peak overlap, the amount of

measurement noise, and the number of testing data available. The system conditions from

Computational Study 1 still applied for Computational Study 2 — there was 31.7% non-

59



Chapter 3. Nonnegatively Constrained Classical Least Squares Steven H. Crouse

200 400 600 800

N
or

m
al

iz
ed

 S
ta

ck
ed

 S
pe

ct
ra

 R
ef

er
en

ce
s

Non-target Overlap

8.0 %

13.4 %

21.1 %

31.7 %

45.3 %

61.7 %

80.3 %

100.0 %

a)

200 400 600 800

Measurement Noise

0.010 %

0.024 %

0.055 %

0.130 %

0.307 %

0.722 %

1.700 %

4.000 %

b)

Exp 1 2 3 4 5 6 7 8

Data 1 4 14 52 193 720 2683 10000

c) Test Data

Figure 3.5: The four manipulated axes investigated in Computational Study 2: a) spectral
overlap (8.0% – 100%), b) standard deviation of Gaussian measurement noise (0.01% –
4.00%), and c) the number of test data that contain the non-target peak (1 – 10,000).

target overlap with Target 2; there was 0.2% additive measurement noise; there were 15

testing data — except when an experimental condition was varied in agreement with Fig-

ure 3.5a, Figure 3.5b, or Figure 3.5c. Additionally, Computational Study 2 uses RMSE of

Target 2 (rather than RMSE of all target species) as an error metric, since this study focuses
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primarily on how the methods perform with target and non-target overlap.

3.3.2 Physical Experiment

In addition to the in silico experiments performed, experimental Raman and ATR-FTIR

spectra measuring soluble anions in solutions typical of nuclear waste were preprocessed

and quantified [5, 24, 7]. Nine training experiments were prepared and measured via Ra-

man and ATR-FTIR spectroscopy. Measurements were collected in a Mettler Toledo Op-

tiMax vessel at 25◦C and stirred at 400 RPM. In-situ Raman spectroscopy measurements

were collected with a Mettler Toledo ReactRaman 785 using a 785 nm laser and 300 mW

laser power at 0.75 s exposure time and 10 averaged scans. In-situ ATR-FTIR measure-

ments were collected using a Mettler Toledo ReactIR 10 with one-minute sample collection

time corresponding to 256 averaged scans. All spectra used for this study were collected

after complete dissolution of all chemical species, verified by the previously mentioned

in-situ Raman and ATR-FTIR probes. There were 42 experimental spectra (with no prior

preprocessing) containing additional non-target species collected using the same exact in-

strumentation and settings and published by Kocevska et al. in 2021 [21]; these data were

used as test data in this study. To handle possible shifting baselines, the experimental Ra-

man and ATR-FTIR spectra are Savitzky-Golay filtered prior to standard normal variate

scaling (Figure 3.3d) with seven filter points, a second order polynomial, and a first order

derivative [100].

In this chapter, the training data included the target anions of nitrate (NO−
3 ), nitrite

(NO−
2 ), and sulfate (SO2−

4 ). The dataset published by Kocevska et al. includes the same

target species in addition to non-target anions of carbonate (CO2−
3 ), phosphate (PO3−

4 ),

acetate (C2H3O
−
2 ), and oxalate (C2O

2−
4 ). Of the non-target species, carbonate is the pri-

mary non-target species studied in this chapter because it overlaps significantly with nitrate

in both the Raman spectrum and infrared spectrum, and therefore cannot be effectively

subtracted by feature selection in the original domain of the spectra. In the Raman spec-
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trum, carbonate appears as a shoulder on the higher-wavenumber side of the nitrate peak at

1050 cm−1 giving 24.6% peak overlap. In the Fourier transform infrared (FTIR) spectrum,

carbonate appears as a shoulder on the higher-wavenumber side of the nitrate peak at 1340

cm−1 giving 79.8% peak overlap. Reference spectra for the experimental system are shown

in Figure 3.6.
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Figure 3.6: Experimental references at a concentration of 1 M for a) Raman and b) ATR-
FTIR spectra. Target species are displayed in solid lines, while non-target species are
displayed in the dashed lines.

3.3.3 Partial Least Squares Regression

PLSR is a well-studied quantification model that has been applied to quantifying mul-

ticollinear data, as is commonly seen in spectroscopic applications [101, 102, 103, 24].

PLSR quantification models with four components were used to quantify all spectra in this

chapter. All spectra in Computational Study 1, the Raman experimental study, and the

ATR-FTIR experimental study were quantified by a single PLSR model for each respective

set of data. The PLSR model for Computational Study 2 was retrained for each experi-

ment on new pseudorandom training data, but the same model and training data was used

between the six preprocessing methods. Additional information on PLSR can be found at

Chapter B.
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The PLSR models were fit to training data that included only target species; there were

no non-target species present in the training data. The data used to train the PLSR quantifi-

cation model are described in Section 3.3.1 for the in silico experiments and in Section 3.3.2

for the physical experiments. The PLSR model outputs had a nonnegative filter applied so

that no reported concentrations are less than zero.

3.3.4 Computation

NCCLS relies on solving Equation 3.6, which is a quadratic programming problem that

is solved in this chapter numerically using IBM’s CPLEX solver (v22.1.1) [104] within the

Pyomo optimization framework (v6.4.0) developed at Sandia National Laboratory [105]. In

this implementation, the optimization problem can be performed in real-time, although any

quadratic program solver would suffice. All computations for this study were performed

using Python (v3.9.12), NumPy (v1.21.5), Scikit-learn (v1.1.1), TensorFlow (v2.8.0), and

Keras (v2.8.0). Code for NCCLS, all other preprocessing methods used, and data can be

found on GitHub4.

All experiments used a “cold start” initialization with pseudorandomly generated initial

conditions determined by the respective method with a set pseudorandom seed for repro-

ducibility. Additionally, the computational experiments used a set pseudorandom seed to

generate data; identical data were preprocessed via the different preprocessing methods

within the same experiment in the computational and physical experiments.

3.4 Results: Computational Spectra

In this section, a spectroscopic system was created computationally with additive Gaus-

sian noise, and the efficacy of six preprocessing algorithms were compared.

4https://github.com/magrover/Spectral-Preprocessing-NCCLS/tree/main
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3.4.1 Computational Study 1

Batch Preprocessing Methodology

The performance of the preprocessing methods were compared qualitatively through

visual comparisons of the spectra. Results from Computational Study 1 are shown during a

batch preprocessing methodology (15 test spectra are available at once). In Figure 3.7, the

yellow dotted line corresponds to original spectra that have not undergone preprocessing to

remove non-target species, the solid red lines correspond to the reconstructed spectra after

preprocessing, and the dashed blue lines correspond to the true target peaks (i.e. the spectra

if the non-target peak was not present). An SNR feature selection was performed prior to

the preprocessing methods shown, so discontinuities appeared in wavenumber ranges that

do not overlap with target species (this is most prominantly seen in Figure 3.7a). In com-

paring the methods, the plot with no preprocessing (Figure 3.7a) shows that the non-target

peak was very prominent on the lower-wavenumber side of the target peak located at 600

cm−1, even after the SNR feature selection. PCA (Figure 3.7b), SRACLS (Figure 3.7c),

and possibly CDAE (Figure 3.7d) all removed some contributions of the non-target peak as

can be seen by the correct peak width and location at 600 cm−1, but the the reconstructed

peaks over-predicted the target peak at 600 cm−1. NCCLS (Figure 3.7g), BSS ICA (Fig-

ure 3.7e), and BSS PCA (Figure 3.7f) reconstructed the target peaks with the correct peak

width, location, and height of the target peak at 600 cm−1.

Reconstructing spectra of the original dimension before quantification, rather than re-

gressing in the projected space, allows for any already-trained quantification model to be

used for quantification without potentially expensive and resource-intensive model recali-

bration while also allowing for human interpretation of non-target species removal. Parity

plots of quantification after preprocessing are shown in Figure 3.8. NCCLS had the lowest

RMSE of 0.016, followed by BSS PCA (0.017), BSS ICA (0.031), PCA (0.082), SRACLS

(0.083), and CDAE (1.127). Based on the results of Figure 3.7 and Figure 3.8, the meth-
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Figure 3.7: Comparison of five batch preprocessed in silico spectra with the true target
peaks from those spectra (perfect preprocessing will cause “preprocessed” and “true” spec-
tra to be indestinguishable) with different preprocessing: a) no preprocessing, b) PCA, c)
SRACLS, d) CDAE, e) BSS ICA, f) BSS PCA, and g) NCCLS.

ods that remove unimportant features (PCA, SRACLS, and CDAE) reconstructed data that

resembled training data in peak width and location, compared to the case with no prepro-

cessing. However, the methods that explicitly identified or constrained the non-target con-

tributions (BSS ICA, BSS PCA, and NCCLS) reconstructed data that resembled training

data and additionally matched the true target peak heights. Therefore, this study suggests

that specifically identifying or constraining the non-target species is valuable to removing

its spectral contribution via a preprocessing algorithm.
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Figure 3.8: Parity plots quantifying batch preprocessed in silico spectra from Computa-
tional Study 1 with different preprocessing: a) no preprocessing, b) PCA, c) SRACLS, d)
CDAE, e) BSS ICA, f) BSS PCA, and g) NCCLS.

Real-Time Preprocessing Methodology

Figure 3.9 shows the results from Computational Study 1 in a real-time monitoring

scenario where the same data from Computational Study 1 was quantified, but each test

spectrum was preprocessed in isolation. This was to distinguish from the results shown

in Figure 3.8, where all 15 test spectra were preprocessed simultaneously. Analyzing a

single spectrum at a time is more challenging for methods that extract information from
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test data for source separation, such as in the BSS methods studied in this chapter. Fig-

ure 3.9 shows that PCA, BSS PCA, and BSS ICA were negatively impacted as prepro-

cessing methods when preprocessing a single test spectrum. However, SRACLS, CDAE,

and NCCLS had unaffected performance, suggesting that these methods are robust for real-

time or data-limited applications. It is shown in a study with replicates (Section 3.4.2) that

the performance of SRACLS in a real-time preprocessing scenario may not be consistently

reproducible.
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Figure 3.9: Parity plots quantifying real-time preprocessed in silico spectra from Compu-
tational Study 1 with different preprocessing: a) no preprocessing, b) PCA, c) SRACLS,
d) CDAE, e) BSS ICA, f) BSS PCA, and g) NCCLS.

3.4.2 Computational Study 2

Computational Study 2 performs replicates of Computational Study 1 with a batch pre-

processing methodology. First, the different preprocessing methods were compared as the

amount of non-target peak overlap was adjusted from 8.0% – 100.0%. In Figure 3.10, the

effect of different amounts of overlap can be seen for the different preprocessing methods.

The RMSE for the no preprocessing scenario increased and then decreased as the amount
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of non-target overlap was increased. This behavior was due to SNV scaling that was ap-

plied to all of the data prior to being input into the PLSR quantification model. While 100%

overlap caused the most overlap between the target and non-target peaks, the greatest quan-

tification interference occured between 20% – 30% peak overlap. The training data in this

study had a lower standard deviation far from the target peaks. Since the non-target peak

was in the region of the domain which had a low standard deviation in the training data,

the non-target peak was divided by a relatively small standard deviation (scaled to be rela-

tively large) when SNV-scaled (shown in Equation A.3). This scaling behavior increased

the impact of the SNV-scaled non-target peak.

In Figure 3.10, all of the methods except CDAE improved quantification compared to

no preprocessing at small and intermediate amounts of peak overlap. However, the perfor-

mance of all methods converged at high peak overlap amounts and did not offer apprecia-

ble quantification improvement at 100% peak overlap. This result was expected, because

at 100% peak overlap, there were no distinguishing features between the target and non-

target peaks in this study. At large overlaps (50% or more), the best performing methods

were BSS ICA, NCCLS, and then BSS PCA, which all outperformed PCA, SRACLS, and

CDAE. The BSS methods and the autoencoder (BSS PCA, BSS ICA, and CDAE) had

greater variances across different runs compared to the other methods in Figure 3.10 (PCA,

SRACLS, and NCCLS). This result was consistent with the performance of MCR-ALS,

ICA, and network layers being variable run-to-run with different initializations (as was

done in this chapter).

Figure 3.11 shows how the preprocessing methods were affected by varying the stan-

dard deviation of Gaussian instrument noise from 0.01% – 4.00% of the maximum peak

height. The results with no preprocessing (red circles) indicated a counter-intuitive re-

sult; increased instrument noise resulted in better quantification at high noise levels. This

counter-intuitive behavior can be attributed to the scaling applied to all spectra prior to

PLSR quantification in this chapter. Increased instrument noise resulted in an increased
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Figure 3.10: Comparison of Target 2 RMSE for different preprocessing methods as a func-
tion of non-target peak overlap percentage. Error bars correspond to full range of five
replicates used for this study with pseudorandom spectra and model initializations (see
Section 3.3.1 for experiment description). The inset plot is distinguished by a “zoomed in”
scaling.

standard deviation of training data (refer to Equation A.3 for SNV scaling). An increased

standard deviation decreased the scaled peak height of the non-target peak in the scaled

space prior to quantification. Therefore, increased noise in the training data resulted in

better quantification by the PLSR model in this case.

Figure 3.11 also shows that all of the preprocessing methods, with the exception of

CDAE, improved PLSR quantification at all studied noise levels. NCCLS preprocessing

resulted in less accurate quantification as noise levels were increased. BSS PCA and BSS

ICA did not have a definite trend with increased noise. PCA, SRACLS, and CDAE im-

proved as noise levels were increased. The improved quantification of these methods with

increasing noise was due to fewer features providing meaningful signal when the spectrum

was noisy. Only features that provided large amounts of target signal relative to the noise

were identified as important features by the algorithms, and therefore projected into the

methods’ subspaces. Thus, the non-target peak did not have as much of its information

projected at higher noise levels with PCA, SRACLS, and CDAE.
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Figure 3.11: Comparison of Target 2 RMSE’s for different preprocessing methods as a
function of instrument (spectra) noise. Error bars correspond to full range of five replicates
used for this study with pseudorandom spectra and model initializations (see Section 3.3.1).
The inset plot is distinguished by a “zoomed in” scaling.

Figure 3.12 shows the effect different amounts of test data (1–10,000) have on the

preprocessing methods studied in this chapter. As the amount of test data were increased,

BSS ICA and BSS PCA showed better performance. At low amounts of test data (i.e. one

test spectrum available at a time), all of the methods had a relatively large variance except

NCCLS. With just one test spectrum, PCA, SRACLS, and BSS ICA all have at least one

run that outperformed the worst performing run of NCCLS. However, NCCLS is the only

method that consistently performed accurately during all five in silico trials with a Target

2 RMSE of 0.012. PCA was the closest in average performance to NCCLS with a Target

2 RMSE of 0.092 representing a 695% increase over NCCLS when provided a single test

spectrum. The performance of SRACLS given five replicates suggests that the good real-

time performance shown by SRACLS in Computational Study 1 (Figure 3.9) may not be

reproducible.

NCCLS offered appreciable improvement to spectra quantification for all studied con-

ditions of non-target overlap, noise level, and amount of testing data except when the non-

target and target species were indistinguishable at 100% overlap. Additionally, NCCLS is
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Figure 3.12: Comparison of Target 2 RMSE for different preprocessing methods as a func-
tion of number of test data. Error bars correspond to full range of five replicates used for
this study with pseudorandom spectra and model initializations (see Section 3.3.1). The
inset plot is distinguished by a “zoomed in” scaling.

the only method that consistently enabled accurate quantification when only one test spec-

trum was available for analysis. The effective and reproducible non-target removal using

NCCLS in this in silico study supported its implementation on experimental data.

3.5 Results: Experimental Raman and ATR-FTIR Spectra

Experimental Raman and ATR-FTIR spectra were preprocessed with the preprocessing

methods described in Section 3.2 in a real-time scenario where only one test spectrum at

a time was available for preprocessing. The information flowchart from Figure 3.3 also

applied to the experimental spectra in this section.

3.5.1 Raman Spectra (Real-Time)

The primary visual indicator of successful non-target removal in the Raman spectrum

was the removal of the carbonate shoulder (1067 cm−1) on the higher-wavenumber side

of the nitrate peak (1050 cm−1) without affecting the target peaks. Figure 3.13 shows the

different preprocessing methods removing non-target spectral contributions. PCA, SRA-
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CLS, and NCCLS display a subtraction of the non-target carbonate peak centered at 1067

cm−1 while leaving the nitrate peak at 1050 cm−1 unaffected. CDAE and BSS PCA did not

appreciably subtract the carbonate peak, suggesting that these methods were not effective

in identifying and subtracting the non-target carbonate peak in a real-time monitoring sce-

nario. BSS ICA displayed the significant subtraction of the target nitrate peak in addition to

the non-target carbonate peak, possibly indicating an incorrectly identified source. Target

peak subtraction was attributed by Kocevska et al. to subtle peak-shifting that occurs with

the nitrate peak as the solution phase becomes more concentrated [21, 67]. The effect of

peak shifting for target species is not accounted for in this chapter for any of the methods

presented.

The resulting preprocessed Raman spectra were also quantified by a PLSR model, with

the results being included in the parity plots of Figure 3.14. SRACLS was the best per-

forming preprocessing method followed by NCCLS, PCA, BSS PCA, CDAE, and BSS

ICA. The more accurate quantification of SRACLS, NCCLS, and PCA agreed with the

qualitative non-target removal shown in Figure 3.13, where the peak height of the nitrate

peak was largely unaffected but the shoulder on the higher-wavenumber side of the peak

was removed. Nitrate in the PCA preprocessed spectra was accurately quantified, as can

be seen by the red circles in Figure 3.14b. However, sulfate and nitrite quantification were

significantly impacted (peaks not shown in Figure 3.13), explaining the discrepancy be-

tween the apparent effective carbonate removal in Figure 3.13b and apparent ineffective

quantification in the parity plots of Figure 3.14b. In Figure 3.14e, BSS ICA was under-

predicting nitrate for most predictions, which agreed with the visual subtraction shown in

Figure 3.13e.

3.5.2 ATR-FTIR Spectra (Real-Time)

ATR-FTIR spectra have some differences from the Raman spectra of the previous

section. Notably, the peaks examined in this chapter were more tightly packed in the

73



Chapter 3. Nonnegatively Constrained Classical Least Squares Steven H. Crouse

1000 1050 1100
Wavenumber (cm) 1

0

20000
C

ou
nt

s

a) No Preprocessing

1000 1050 1100
Wavenumber (cm) 1

0

20000

C
ou

nt
s

b) PCA

1000 1050 1100
Wavenumber (cm) 1

0

20000

C
ou

nt
s

c) SRACLS

1000 1050 1100
Wavenumber (cm) 1

0

20000

C
ou

nt
s

d) CDAE

1000 1050 1100
Wavenumber (cm) 1

0

20000

C
ou

nt
s

e) BSS ICA

1000 1050 1100
Wavenumber (cm) 1

0

20000

C
ou

nt
s

f) BSS PCA

1000 1050 1100
Wavenumber (cm) 1

0

20000

C
ou

nt
s

g) NCCLS

Preprocessed
Original

Figure 3.13: Experimental Raman spectra of sodium salts (dashed black) and preprocessed
spectra (solid red) highlighting the nitrate peak at 1050 cm−1 and carbonate peak at 1067
cm−1. Non-targets are removed in a real-time scenario using: a) no preprocessing, b) PCA,
c) SRACLS, d) CDAE, e) BSS ICA, f) BSS PCA, and g) NCCLS.

FTIR spectrum, causing more peak overlap between target species and non-target species.

Because of the large degree of peak overlap in this system, traditional feature selection

methodologies are more likely to fail with ATR-FTIR spectra in this real-time monitoring

scenario.

The primary visual indicator of successful non-target removal in the FTIR spectrum was

the removal of the carbonate shoulder (1380 cm−1) on the higher-wavenumber side of the

nitrate peak (1350 cm−1). Figure 3.15 shows the different preprocessing methods removing

non-target spectral contributions. All of the preprocessing methods subtracted from the

overlapping nitrate and carbonate peak at 1350 cm−1 with the possible exception of CDAE.
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Figure 3.14: Parity plots quantifying nitrate, nitrite, and sulfate from Raman spectra prepro-
cessed in a real-time scenario using: a) no preprocessing, b) PCA, c) SRACLS, d) CDAE,
e) BSS ICA, f) BSS PCA, and g) NCCLS.

All of the other studied methods appeared to subtract the carbonate peak such that the

nitrate peak shape was retained. However, further visual inspection is hindered by the

large amount of overlap between the nitrate and carbonate peaks, and so the spectra were

quantified via a PLSR model for a quantitative indicator of non-target removal accuracy.

The preprocessed FTIR spectra were quantified by a PLSR model, with the results being

included in the parity plots of Figure 3.16. The lowest RMSE observed for the ATR-FTIR
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Figure 3.15: ATR-FTIR spectra of sodium salts (dashed black) and preprocessed spectra
(solid red) where non-targets are removed in a real-time scenario using: a) no preprocess-
ing, b) PCA, c) SRACLS, d) CDAE, e) BSS ICA, f) BSS PCA, and g) NCCLS.

quantification is NCCLS, which is the only method that improved quantification compared

to quantification with no preprocessing. The remaining methods were most accurate in the

order: SRACLS, BSS ICA, BSS PCA, PCA, and CDAE. Visual inspection of Figure 3.15

agrees with the quantitative results of Figure 3.16; NCCLS retained the shape of the nitrate

peak unlike CDAE and BSS ICA, more accurately predicted nitrate peak heights than PCA

and SRACLS, and did not affect other target peaks like BSS PCA.

The lack of effective quantification for the ATR-FTIR spectra contrasted with the rel-

ative success observed in the computational studies and experimental Raman spectra. The

deteriorated preprocessing and quantification performance is in agreement with similar per-
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formance observed in Computational Study 2 (Section 3.4.2) with a small amount of test-

ing data and large amount of peak overlap. In Computational Study 2, all of the methods

except NCCLS led to reduced quantitative accuracy in low data regimes (i.e. one test spec-

trum); NCCLS had the best preprocessing performance. Additionally, at large amounts

of non-target overlap, calculated as 79.8% for ATR-FTIR spectra, all of the methods that

improved quantification through preprocessing had less significant performance improve-

ments in Computational Study 2. The poor quantification can be attributed to a combination

of a high-degree of peak overlap, a single testing spectrum, and the possibility of other non-

linearities that appear in real spectra. Analogous results for physical spectra preprocessed

in a batch preprocessing manner are shown in Section D.2 of the Appendix. These results

are qualitatively similar to the results presented in this section, with NCCLS being the only

method that improved quantification RMSE compared to PLSR with no preprocessing.

Additional results that investigated computational efficiency as well as the experimental

results presented here analyzed in a “batch” manner can be found in Chapter D.

In cases where non-target removal is ineffective, as is suggested by the imperfect re-

moval of carbonate from the nitrate peak in the ATR-FTIR data, the possibility of including

non-target species as additional target species may warrant consideration. Inclusion of ad-

ditional target species will increase the size of training data. However, this method of

handling non-target species has been demonstrated for overlapping species previously. For

example, Kocevska et al. treat nitrate and carbonate both as target species in a similar

chemical system and instead remove only non-target species with less significant overlap

[21].
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Figure 3.16: Parity plots quantifying nitrate, nitrite, and sulfate from ATR-FTIR spectra
preprocessed in a real-time scenario using: a) no preprocessing, b) PCA, c) SRACLS, d)
CDAE, e) BSS ICA, f) BSS PCA, and g) NCCLS.

3.6 Conclusion

Establishing robust quantification models is vital to industrial processes utilizing spec-

troscopy where non-target species may appear. This chapter introduces a new spectral

preprocessing technique, nonnegatively constrained classical least squares (NCCLS), that

leverages the nonnegativity of non-target spectral contributions to preprocess solution-
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phase vibrational spectra. In the present chapter, NCCLS was shown to improve prepro-

cessing in comparison to other available methods, including the BSS method introduced in

Chapter 2. The comparison was with both idealized spectra in a computational study and

real spectra in an experimental study using Raman and ATR-FTIR spectra. For in silico

spectra, NCCLS was shown to be the best performing method for both batch preprocess-

ing and real-time preprocessing scenarios. Additionally, it was demonstrated that NCCLS

may have particular use in industrial real-time monitoring scenarios, with an average (over

five replicates) overlapping-target RMSE of 0.012 representing a 7.95 times improvement

over the next-best method in an in silico real-time example. The robustness of NCCLS was

demonstrated by testing the effects of varied peak overlap, noise level, and data quantity.

Additionally, the effectiveness of NCCLS was demonstrated in an experimental study

utilizing Raman and ATR-FTIR spectra in a real-time transfer learning scenario; spectro-

scopically active species appear in the test data that do not exist in the training data. In

the Raman spectrum, NCCLS performed comparably to other methods, only being out-

performed by SRACLS. In the ATR-FTIR spectrum, NCCLS was the only preprocessing

method that was able to improve quantification compared to spectra with no preprocess-

ing. This chapter explored NCCLS as a single method for improving the robustness of

vibrational spectra quantification models. The physical constraints utilized in NCCLS may

have bearing to additional preprocessing methods and applications beyond the currently

explored study.
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CHAPTER 4

MEASURING DENSE SLURRIES WITH SPECTROSCOPIC SENSORS

The prior chapters in this thesis have been primarily concerned with measuring solu-

tions; i.e. systems where all components fully dissociate in a solvent. However, nuclear

waste is often a slurry. All slurries — with some examples being mud, paint, toothpaste,

and cake batter — have two parts: a solution phase and an insoluble phase. The multi-

phase nature of slurries can make them difficult to process and monitor in real time due

to having variable composition, particle size, and particle shape. The nuclear-waste slur-

ries present at the Hanford site in Washington State are multicomponent, multiphase, and

inhomogeneous.1

As mentioned in the introduction of this thesis, the state-of-the-art for analyzing ra-

dioactive waste at Hanford requires laboratory results from an on-site analytical laboratory

(grab-sampling), which can delay processing speed and create exposure risks for workers.

In-line probes may provide an alternative route to collecting necessary composition infor-

mation. However, there is limited published literature showing quantification of spectra in

dense multicomponent slurries typical of nuclear waste.

In this chapter, Raman spectroscopy and attenuated total reflectance - Fourier trans-

form infrared (ATR-FTIR) spectroscopy are tested on simulants of nuclear-waste slurries

containing up to 23.2 wt% solids. It was observed that ATR-FTIR spectroscopy was ef-

fective in measuring the solution phase of the studied slurry systems (3.52% mean percent

error), while Raman spectroscopy also provided information about the suspended solids in

the slurry system (18.21% mean percent error). Measurement of multicomponent solids

typical of nuclear-waste processing is previously unreported. The composition of both the

solution and solid phases are vital in ensuring stable glass formulation and effective dis-

1Much of the content and many of the figures in this chapter are reproduced from Prasad et al. [19]
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posal of nuclear waste at Hanford. Raman and ATR-FTIR spectroscopies may provide a

safer, faster alternative for acquiring compositional information on nuclear-waste slurries.

4.1 Introduction

The use of ATR-FTIR and Raman spectroscopy is poorly studied in multicomponent

systems with concentrated solids [19]. Because of the variety of real systems that con-

tain solid particulate matter, the results presented here have importance for operations at

Hanford and have bearing on real-time monitoring in many fields [106, 107]. Optical spec-

troscopy has been applied as a process analytical technology (PAT) tool in pharmaceutical,

food, and mining industries [19]. ATR-FTIR spectroscopy primarily measures the solution

phase due to a short laser path length, while Raman spectroscopy (not in an attenuated

total reflectance (ATR) configuration) interrogates both the solution phase and suspended

solid particles. However, most applications of these spectroscopies have been limited to

systems with concentrations of suspended solids up to 5 wt% or to binary components

at higher solid loadings [108]. Although other spectroscopies, such as X-ray Fluorescence

and near-infrared spectroscopy have been used in the mining industry to investigate systems

containing 21 wt% solids [109], the application of vibrational spectroscopy for monitoring

multi-component slurries with high solids content is scarce. Specifically in the nuclear

field, Raman spectroscopy and ATR-FTIR spectroscopy have been shown effective in iden-

tifying and quantifying molecular species in solution. Despite complex solution behavior

and overlapping spectral bands, progress has been made in the analysis of streams of nu-

clear waste through preprocessing techniques [67], physical modeling [110], and use of

multiple excitation wavelengths [22]. However, much of this work has been done analyz-

ing optically transparent solutions without high concentrations of suspended solids.

For high-level waste (HLW) processing at Hanford, the proposed process is designed

for 20 wt% insoluble solids [111]. For the currently planned low-activity waste (LAW)

process, the addition of glass-forming chemicals (GFCs) will create a slurry with roughly
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22–33 wt% insoluble solids [112]. Since the application of PAT to monitor nuclear-waste

slurries has received scant attention, this work investigates the applicability of in-line probes

to analyze slurries representative of nuclear waste containing up to 400 g of insoluble

solids/kg solvent (23.2 wt%). Measuring the solids concentration of slurries with Raman

spectroscopy presents challenges because of the strongly absorbing and scattering proper-

ties of most slurries, in addition to competing fluorescence effects [113, 90].

The present chapter focuses on a specific scenario in waste processing at Hanford.

Specifically, monitoring the composition of nuclear-waste feeds within the Melter Feed

Preparation Vessel (MFPV) as a case study of nuclear waste containing suspended solids.

The MFPV will have a similar purpose in both LAW and HLW processing: that is, GFCs

are added to nuclear waste in the MFPV tank before eventually being transported to the

melter. Compositional measurements of the MFPV are planned to verify proper compo-

sitions for a durable glass form before being melted [7]. The analytical measurements of

the slurry in the MFPV vessel represent a hold point during HLW vitrification, indicat-

ing the waste will not be further processed until concentration measurements are obtained.

Therefore, the implementation of in-line probes may offer advantages by facilitating faster

downstream decision making and mitigating the risk associated with grab-samples. In addi-

tion to the specific study of nuclear waste entering the MFPV, much of the work presented

here is also applicable to other processing instances that have multicomponent suspended

solids [114].

4.2 Methods

4.2.1 Instrumentation

Measurements were collected at a 100 mL scale in a Mettler Toledo (MT) OptiMax

reactor (250 mL) installed with a pitched-blade agitator (Alloy C-22, downward, ∅ 45 mm)

fitted with the following in situ devices: a Raman probe, a pH probe, a temperature probe,

and an ATR-FTIR probe (see Figure 4.1). A Teflon vessel was used due to the high pH
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of the solution. Raman spectra were recorded with a Mettler Toledo ReactRaman 785

instrument using a 785 nm laser at 300 mW power, 1 s exposure time, 10 averaged spectra,

and a spectral resolution of 6 cm−1. The Raman probe tip is a ball–probe configuration

leading to a focal point about 200 µm from the probe surface [115, 116]. Infrared spectra

were recorded with a Mettler Toledo ReactIR 10 instrument with a diamond probe tip and

a spectral resolution of 8 cm−1. The ATR design limits the penetration depth of the infrared

radiation to ∼2 µm [53]. Data were acquired using iC Raman and iC IR software from

Mettler Toledo. Fouling of the ATR-FTIR probe was observed in the presence of silicates

(see Figure 4.2). To minimize the effect of fouling, the ATR-FTIR probe was cleaned before

each measurement. No fouling was observed on the Raman probe; the difference in fouling

behavior between the Raman and ATR-FTIR probe tips may be caused by a difference in

material (sapphire for Raman and diamond for ATR-FTIR) or geometry (convex for Raman

and concave for ATR-FTIR).

4.2.2 Composition

The system is based on the 5.6 M Na+ low-activity waste (LAW) pretreatment sys-

tem simulant (sodium salts) [21] combined with simulated glass-forming chemical (GFC)

recipes composed predominantly of metal oxides and silicates [112]. Figure 4.1b shows

a slurry obtained after the addition of GFCs with the simulants (900 g GFCs/kg water).

The LAW simulants comprise water, sodium hydroxide, and seven sodium salts: nitrate,

nitrite, carbonate, sulfate, phosphate, oxalate, and acetate. The GFC compositions were

formulated and provided by Savannah River National Laboratory (SRNL) [112]. The GFC

simulants comprise five insoluble silicates: silica, kyanite, wollastonite, olivine, and zir-

con; four metal oxides: hematite, rutile, tin oxide, and zinc oxide; and four additional

soluble species: vanadium pentoxide, boric acid, sucrose, and lithium carbonate. The con-

centration ranges for all species are listed in Table 4.1 – Table 4.3. All experiments were

conducted at 3 m NaOH to simulate the basic conditions expected at the Hanford Waste
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Figure 4.1: a) Photograph of the OptiMax reactor setup with in-situ probes: Raman, ATR-
FTIR, temperature, and pH, b) a close-up view of the dense slurry studied in this work.

Treatment Plant (WTP). At this molality of sodium hydroxide, the pH remained above 13

for all experiments, which was verified with an in situ pH probe. The experiments were

temperature-controlled to 25 ◦C and stirred at 400 rpm to maintain a suspension of solids

inside the apparatus. The experiments were designed using the MATLAB (2022b) random

number generator to randomly design compositions within the bounds of each species.

Additional details about the validity of the experimental design are discussed in Chapter F.

4.2.3 Design of Experiments

The experimental space was designed by creating component-wise lower and upper

bounds based on reported nuclear-waste simulants [117, 112]. Species were bounded by
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Table 4.1: Range of solid concentrations tested in experiments by addition of GFCs (insol-
uble components in 3 m NaOH).

Species Formula Maximum (g/kg water) Minimum (g/kg water)

Kyanite Al2SiO5 99.6 5.9
Wollastonite CaSiO3 99.8 0.0
Olivine Mg2SiO4 45.3 0.0
Silica SiO2 249.9 18.0
Zircon ZrSiO4 42.4 0.0
Hematite Fe2O3 9.4 0.0
Rutile TiO2 1.2 0.0
Tin Oxide SnO2 12.7 0.0

Total (Single Experiment) – 401.8 53.1

Table 4.2: Range of solids composing GFCs with intermediate solubility measured in 3 M
NaOH.

Species Formula Maximum (g/kg water) Minimum (g/kg water)

Vanadium Pentoxide V2O5 31.9 0.0
Zinc Oxide ZnO 22.5 0.0
Sucrose C12H22O11 53.7 4.7

Table 4.3: Range of dissolved anions present in the nuclear-waste simulants studied (solu-
ble components in 3 M NaOH).

Species Formula Maximum (mol/kg water) Minimum (mol/kg water)

Hydroxide OH− 2.98 2.94
Nitrate NO−

3 1.44 0.75
Nitrite NO−

2 1.16 0.56
Soluble Carbonate CO2−

3 0.96 0.14
Sulfate SO2−

4 0.13 0.03
Borate B(OH)−4 2.84 0.15
Phosphate PO3−

4 0.07 0.02
Oxalate C2O2−

4 0.01 0.00
Acetate C2H3O−

2 0.19 0.02
Sucrose C12H22O11 0.24 0.01
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(a) (b)

Figure 4.2: a) Deposition of solids on the ATR-FTIR probe tip when placed in a 3 m NaOH
solution with 10 g silica/kg solvent suspended silica, and b) image of the probe tip showing
gradual buildup on the probe tip.

concentrations expected in nuclear-waste streams at the Hanford WTP. Individual experi-

ments were conducted by randomly sampling from this experimental space using a pseudo-

random uniform distribution in MATLAB 2021a. These pseudo-random experiments were

then ordered in batches of 6–12 step-wise samples to allow serial addition; this enabled

more data collected with the same materials. There were 48 unique samples (at different

concentrations) collected for ATR-FTIR, and there were 66 unique samples (at different

concentrations) collected for Raman. When silicates were present, solid particles deposited

on the ATR-FTIR probe during data collection. To eliminate the spectral bands caused by

depositing solids, the ATR-FTIR probe was cleaned before every measurement containing

silicates to ensure reliable spectra. Every sample was allowed to equilibrate before the

ATR-FTIR probe was cleaned and a measurement was taken. Data showing this deposition

are provided in Section 4.2.3. All solid species were nominally 325-mesh or less (corre-

sponding to a diameter of 45 µm or less). The ranges of added concentrations are listed

below for insoluble and partially soluble species in Table 4.1 and Table 4.2, and soluble

species in Table 4.3. The solubility for these species in 3 m NaOH is reported by Prasad et

al. as measured by inductively coupled plasma (ICP) [19].
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ATR-FTIR Probe-Tip Cleaning

The silicates (silica, kyanite, wollastonite, olivine, and zircon) were observed to deposit

on the ATR-FTIR probe at the basic conditions studied. This deposition appeared as a

broad combination of peaks centered around 1100 cm−1 and spread from 1000 cm−1 to

1200 cm−1. In Figure 4.2a, these peaks can be seen as they appear in the Fourier transform

infrared (FTIR) spectrum and in Figure 4.2b, images of the solid substance on part of the

probe tip. Notably, the solids provided a peak but did not interfere with quantification of

the solution phase (as shown by the unaltered water peak centered at 1640 cm−1).

While the solid deposition was not observed to interfere with the solution phase mea-

surements and could potentially be subtracted as a baseline in practice, the experimental

procedure included cleaning the probe tip before every measurement to minimize unantic-

ipated sources of variation and to ensure experimental consistency. Because of the slow

buildup of solids on the probe tip, measurements were taken with 15 s scan time and im-

mediately after reinserting probe into the solution. Detection and removal of solid contri-

butions may be achieved through computational approaches presented elsewhere [21, 118]

and appearing in Chapter 2 and Chapter 3 of this thesis.2 In addition, different materials

or probe geometries may result in a less favorable surface for deposition. Solids were not

found to attach to the Raman probe tip during experiments.

4.2.4 Data Preprocessing

All preprocessing steps were performed with Python 3.9.12. The Python code and the

dataset can be found on Github3. ATR-FTIR data were narrowed to a range of 900 to 1800

cm−1 for quantification. This range contains all solution peaks provided by the instrument.

A Savitzky-Golay filter [119, 100] was used to differentiate the ATR-FTIR spectra with re-

spect to wavenumber with five filter points, a second order polynomial, and first derivative.

2Computational removal of probe fouling is done in Chapter 7.
3https://github.com/magrover/multicomponent-slurry-quantification
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The publicly available package, SciPy, was used to perform Savitzky-Golay filtering. The

Raman data were narrowed to a range of 100 to 1700 cm-1 for quantification. The range

contains all observable peaks for insoluble species. No derivative was taken for the Ra-

man spectra because of the correlation between baseline and some solid species, although

the effect of first-derivative Savitzky-Golay filtering may improve model performance and

reproducibility and is shown in Section 4.3.5.

4.2.5 Regression Model

A linear spectra-to-concentration relationship is expected with a Raman probe in an

ideal system [53, 120]. The quantitative basis for Raman spectroscopy is given as:

L = PD β DK (4.1)

where L is a measure of intensity [photons
sr·cm·s ], PD is power of the laser [photons

cm2·s ], β is the

differential Raman cross section [ cm2

mol·sr ], D is the density of Raman-scattering molecules

[molecules
cm3 ], and K is a dimensionless geometric factor accounting for detection angle [90,

120]. Equation 4.1 shows that, when PD β K are constants, the detected Raman scattering

depends linearly on the density of scattering molecules. Attenuation or absorption can

affect the Raman bands of optically dense samples, which might be seen in a slurry with

suspended solids and is investigated in Chapter 5 [90, 120, 121].

For the ATR-FTIR probe, the Beer–Lambert Law is expected to apply to solution-phase

measurements, with little interference from suspended solids [53]. The Beer–Lambert Law

is given as:

Aλ = ελ l c (4.2)

where Aλ is absorbance at a particular wavelength, ελ is the molar absorptivity at that

wavelength [ L
mol·cm ], l is the effective path length [cm], and c is the species’ concentration
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[mol
L
].

Partial least squares regression (PLSR) [101, 102] was chosen as the spectra-to-composition

model in this work. PLSR has been used for analysis of both nuclear waste solutions [21,

24, 9, 122] and pharmaceutical slurries [123, 124, 120]. The scikit-learn package (version

1.0.2) implementation of PLSR was used for all quantification in this work. Additional

description of PLSR is given in Chapter B of this thesis. No scaling was applied to the data

prior to data quantification in this chapter, since scaling had a negative impact on Raman

quantification of the insoluble species presented here.

Training and testing datasets were determined using a leave-one-out cross validation

scheme. A single sample (test spectra) was estimated using a PLSR model trained on

all other samples (training spectra), and then the process is repeated. Minimum Akaike

information criterion (AIC) was used for determining the number of latent variables in

each PLSR model [125]. The Raman PLSR quantification model was determined to use 10

latent variables, while the ATR-FTIR PLSR quantification model was determined to use 15

latent variables.

As part of the analysis in Section 4.3.4 and Section 4.3.5, mixture spectra were pre-

dicted from the gravimetrically measured concentrations of both dissolved salts and sus-

pended solids. An indirect classical least squares (ICLS) method was used for visualizing

what spectra “should” look like for Raman or ATR-FTIR based on Equation 4.1 and Equa-

tion 4.2 [126]. ICLS is distinguished from classical least squares (CLS) by calculating

reference spectra (linear basis functions) from mixture spectra with known composition;

in CLS, reference spectra are known. From the estimated reference spectra from ICLS

and known composition information, linearly-predicted mixture spectra were estimated and

compared to observed spectra. For ICLS predictions, all spectra were mean-centered. Lin-

ear references were determined from the mixture data by fitting the experimental spectra

of mixtures with known concentrations. The calculated references were used in conjunc-

tion with Equation 4.1 and Equation 4.2 to predict spectra with gravimetrically measured
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concentrations. In Section 4.3.4 and Section 4.3.5, predicted spectra were used to show

deviations from the assumed linear models.

Error Metrics

Four error metrics were used to quantify the quantitative accuracy of the spectra-to-

composition PLSR models. These are root mean squared error (RMSE), mean absolute er-

ror (MAE), the one-sided 95% confidence interval (CI95%), and mean percent error (MPE).

The metrics are defined below in Equation 4.3 – Equation 4.6 for single species:

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)
2 (4.3)

MAE =
1

N

N∑
i=1

|yi − ŷi| (4.4)

CI95% =
z s√
N

(4.5)

MPE =
1

N

N∑
i=1

|yi − ŷi|
yi

× 100% (4.6)

where yi is the true concentration in experiment i, ŷi is the predicted concentration in

experiment i, N is the total number of experiments, s is the standard deviation of measured

concentrations, and z is the confidence level value (±1.96 for 95%).

4.3 Results and Discussion

4.3.1 Solution Measurements with Probes

The analysis of the studied slurry system is enabled by the complementary capabilities

of the Raman probe and the ATR-FTIR probe. Figure 4.3 demonstrates a ternary system

consisting of soluble sodium nitrate, insoluble silica, and 3 m NaOH solution. Response

profiles can be seen for Raman (Figure 4.3a) and the ATR-FTIR (Figure 4.3b) probes when
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the concentration of suspended solids is increased. Notably, the ATR-FTIR instrument can

detect soluble NO−
3 anions with no apparent dependence on solids concentration in the

solution (Figure 4.3b). This result matches other published research indicating that the in-

frared laser does not appreciably contact suspended solids given the shallow penetration

depth of the ATR mode of operation [53, 127]. The Raman probe, however, is in a ball

probe configuration with a sapphire lens and has a path length approximately two orders of

magnitude greater than a probe in ATR configuration [115]. Because of the increased path

length, the Raman probe may be affected by the optical density of the slurry. In Figure 4.3a

and Figure 4.3c, the Raman probe shows a reduced NO−
3 signal intensity with the increase

in solids concentration, suggesting that Raman spectroscopy may not be effective at mea-

suring the solution phase at high solids concentrations. However, this does not preclude

Raman spectroscopy from providing information about the solid phase of the slurry, which

is not provided by probes in ATR configuration.

4.3.2 ATR-FTIR and Raman Spectroscopy Analysis of Individual GFC Components Dispersed

in Alkaline Media

The components of GFCs were grouped into three categories based on their solubility

in basic solution (results shown in the Supplemental Information of Prasad et al. [19]):

insoluble species (silica and other silicates such as kyanite, wollastonite, olivine, and zir-

con), metal oxides (hematite, rutile, tin oxide, zinc oxide), and soluble species (vanadium

pentoxide, boric acid, and lithium carbonate). Solubilities were estimated using ICP over

10 days [19]. Peaks of each component are identified via reference spectra in Chapter E.

4.3.3 Quantification of Slurries

ATR-FTIR was used to quantify the concentration of dissolved molecular species in

slurries comprising GFCs in nuclear-waste simulants. Based on the system studied, the

most abundant (and therefore process-relevant) soluble species were quantified with ATR-
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Figure 4.3: Spectra for a) Raman and b) ATR-FTIR spectroscopy at different concentra-
tions of suspended solid particles and c) attenuation of the nitrate peak with increasing
solids concentration.

FTIR [21, 117]: NO−
3 , NO−

2 , CO2−
3 , and SO3−

4 . In addition, borate (B(OH)−4 ) was chosen

to quantify in the solution phase based on boric acid having high solubility and the distin-

guishable FTIR peak intensity shown in Figure E.1a. Overlapping spectra of all 48 ATR-

FTIR experiments are shown in Figure 4.4a, along with the peaks of the soluble species

quantified. Two of the studied soluble species were contributed from components in the

GFCs: lithium carbonate (yielding a soluble carbonate anion) and boric acid (yielding a

soluble borate anion). The dissolution and dissociation of lithium carbonate implies that

the carbonate anion has two sources in the studied slurries: sodium carbonate (from waste

simulants) and lithium carbonate (from solid GFCs). Lithium carbonate dissolution was

approximated as 0.304 m (pure lithium carbonate solubility in a 3 m sodium hydroxide

solution at 25 ◦C) to calibrate the PLSR model with gravimetric measurements of total
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carbonate concentration. The carbonate dissolution model resulted in improved carbonate

quantification as demonstrated in the following section; the carbonate dissolution model

was used to quantify carbonate in this work.

NO3- CO32-

NO2-

B(OH)4-

SO42-

H2O
(a)

SiO2 Mg2SiO4 CaSiO3 ZrSiO4

Al2SiO5

(b)

Figure 4.4: Overlapped a) ATR-FTIR, and b) Raman spectra before separating into training
and testing sets.

Carbonate Quantification

The carbonate anion has two sources in the studied slurries: sodium carbonate (from

waste simulants) and lithium carbonate (from solid GFCs) as indicated by Equation 4.7 –

4.9.

[CO2−
3 ]aq = [Na2CO3]dissociated + [Li2CO3]dissociated (4.7)

[Na2CO3]dissociated = [Na2CO3]added (4.8)

[Li2CO3]dissociated ̸= [Li2CO3]added (4.9)

A single peak, corresponding to CO2−
3 , was shared by both components in FTIR. Exper-

iments confirmed that CO2−
3 anions in solution contributed from either salt were identical.

Given only ATR-FTIR spectra as the model input, predictions cannot be made that differ-
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entiate the contributions of sodium carbonate and lithium carbonate: only their sum total.

However, sodium carbonate and lithium carbonate had different solubilities at the condi-

tions tested. In the studied system, the experimental solubility of lithium carbonate was

exceeded, limiting a gravimetric calibration procedure.

Because the PLSR model calibration required knowledge of the total carbonate dis-

solved, a solubility model was used to predict the amount of dissolved lithium carbonate

(as observed by our ATR-FTIR probe). In lieu of a more complete dissolution model (ac-

counting for all present species), lithium carbonate solubility was estimated by a ternary

system comprising sodium carbonate, lithium carbonate, and 3 m sodium hydroxide so-

lution (NaOH and H2O). However, the dissolution of lithium carbonate did not have a

significant trend in the process-relevant ranges of sodium carbonate (0.1–1 m). Therefore,

a constant lithium carbonate solubility of 0.304 m (the pure component solubility of lithium

carbonate in a 3 m sodium hydroxide solution at 25 ◦C) was applied to training and test-

ing data for the PLSR model where [Li2CO3 ]added > [Li2CO3 ]soluble. This resulted in the

application of the solubility model substitution in 17 of 48 FTIR samples.

The effect of the solubility model was tested in Figure 4.5. Use of the solubility model

(Figure 4.5a) improves the PLSR model performance over quantification lacking a solubil-

ity model (Figure 4.5b) in terms of both R2 and visual fit. This indicates that the constant

solubility model better matches the data (Figure 4.5a) than an assumption of complete dis-

solution (Figure 4.5b).

Raman spectroscopy was used to quantify the concentration of suspended solids in slur-

ries of GFCs in simulant solution. Solid silicate species: silica, kyanite, olivine, wollas-

tonite, and zircon were studied due to their abundance in the solid GFC mixtures compared

to other solid compounds and their limited dissolution. Overlapping Raman spectra of all

66 unique experiments at different solids concentrations are shown in Figure 4.4b.
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R2 = 0.991 R2 = 0.955

(a) (b)

Figure 4.5: a) Parity plot showing quantification of carbonate with solubility model applied
to concentration data, and b) parity plot showing quantification of carbonate with no solu-
bility model applied.

4.3.4 Solution Phase Quantification with ATR-FTIR Spectroscopy

Analysis of the FTIR spectra was performed by comparing the measured spectra to

predictions from the Beer-Lambert Law (Equation 4.2). In Figure 4.6a and Figure 4.6b,

two measured experimental spectra (shown in red) were fit with ICLS (least squares fit

shown in blue). Based on the known solution concentrations and fit references, application

of the Beer-Lambert Law predicted mixture spectra (shown in yellow). Table 4.4 quantified

the differences in the spectra that may be difficult to observe based on the spectra alone

(Figure 4.6).

(a) (b)

B(OH)4-

SO42-

NO2-

CO32- NO3- H2O B(OH)4-

SO42-
NO2-

CO32- NO3- H2O

Figure 4.6: Two different ATR-FTIR experiments a) and b) fit using ICLS and predicted
spectra using gravimetrically measured masses.
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From Figure 4.6a, the predicted spectrum (based on known masses added) over-predicted

the measured spectrum at the nitrate/carbonate peak (1400 cm−1), suggesting that the mea-

sured spectrum had a negative deviation from the Beer-Lambert Law. A negative deviation

was reflected in the quantification of the measured spectrum of Figure 4.6a in Table 4.4,

as both nitrate and carbonate were underpredicted based on the measured spectra. An-

other deviation from the Beer-Lambert Law was observed in Figure 4.6b. The predicted

spectrum overpredicted the measured spectrum at the sulfate peak (1100 cm−1), suggesting

the measured spectrum had a negative deviation from the Beer-Lambert Law. Table 4.4,

again, shows that a PLSR model underpredicted sulfate based on the experimental spec-

trum in Figure 4.6b. The size of the deviations shown in the two experiments in Table 4.4,

with a mean deviation of ±0.114 mol/kg solvent, showed general agreement between the

Beer-Lambert Law and measured ATR-FTIR spectra in slurry conditions.

Table 4.4: Predicted concentrations in mol/kg solvent from ATR-FTIR spectra from Fig-
ure 4.6 using a PLSR model

Nitrate Nitrite Carbonate Sulfate Borate

Fig. 5a Predicted 0.863 0.711 0.517 0.025 0.305
Fig. 5a Gravimetric 0.883 0.719 0.538 0.026 0.304
Fig. 5b Predicted 0.877 0.827 0.560 0.073 0.862
Fig. 5b Gravimetric 0.879 0.818 0.522 0.078 0.852

The quantification of soluble anions is shown in Figure 4.7, with each data point having

a unique concentration of dissolved analytes. Bounds of ±20% were motivated by mea-

surement accuracy specifications of the WTP process control data quality objectives [128]

and are shown in Figure 4.7 by dashed lines for reference. Nitrate, nitrite, and borate were

quantified most accurately with prediction R2 values over 0.995 for the tested concentration

ranges. Notably, nitrate and nitrite did not exceed a ±20% limit over process-relevant con-

centrations. Carbonate, sulfate, and borate exceeded the ±20% bound, primarily at lower

concentrations. One sulfate measurement produced a particularly poor prediction (shown

by the sulfate prediction at 0 mol/kg solvent). This particular experiment had near the
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minimum amount of both boric acid and sulfate. Both boric acid and sulfate being at low

concentrations may have resulted in the poor sulfate quantification at that point, particu-

larly since sulfate and boric acid have overlapping peaks in that wavenumber range and

sulfate has a relatively large limit of detection compared to its tested concentrations. Four

accuracy metrics — MAE, RMSE, CI95%, and MPE — are listed in Table 4.5.

R2 = 0.996 R2 = 0.996 R2 = 0.991

R2 = 0.958 R2 = 0.998

(a) (b) (c)

(d) (e)

Figure 4.7: Parity plots (showing ±20% bounds) for soluble anion quantification in the
simulant slurry using ATR-FTIR spectra input into a PLSR model with 15 latent variables
for a) nitrate, b) nitrite, c) carbonate, d) sulfate, and e) borate.

Prediction residuals are shown in Figure 4.8. Due to the comparatively little sulfate

included in these waste simulants, low molality quantification may be hindered by detection

limits of sulfate with our ATR-FTIR probe. The calculated limit of detection (LOD) is 0.01

mol/kg solvent using the method described by Harris [129] with a sulfate reference and

12 repeated measurements. From Figure 4.8, it can be seen that the samples with lower

sulfate concentration were close to the LOD. In addition, the LOD may have been further

impacted by the overlapping borate peak in all samples, since borate was not included when

calculating LOD. For this reason, signal-to-noise ratio (SNR) may become more important

for low-concentration analytes that have overlapping spectral signatures, such as sulfate.
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(a) (b) (c)

(d) (e)

Figure 4.8: Residual plots of soluble anion quantification using ATR-FTIR spectra input
into a PLSR model with 15 latent variables for a) nitrate, b) nitrite, c) carbonate, d) sulfate,
and e) borate.

Table 4.5: Anion quantification accuracy with ATR-FTIR.

Metric Nitrate Nitrite Carbonate Sulfate Borate

Mean Absolute Error (mol/kg solvent) 0.0101 0.0074 0.0148 0.0040 0.0150
Root Mean Squared Error (mol/kg solvent) 0.0127 0.0091 0.0201 0.0058 0.0196
95% Confidence Interval (mol/kg solvent) 0.0277 0.0183 0.0362 0.0087 0.0422
Mean Percent Error (%) 0.96 0.94 3.78 9.37 2.54

4.3.5 Solid Phase Quantification with Raman Spectroscopy

Analysis of the Raman spectra was performed by comparing measured spectra to spec-

tra that a linearity assumption predicted by Equation 4.1. In Figure 4.9a and Figure 4.9b,

two measured experimental spectra (shown in red) were fit with ICLS (least squares fit

shown in blue) to compute linear references for kyanite, wollastonite, silica, olivine, and

zircon. Predicted spectra (shown in yellow) were calculated from known, gravimetrically-

measured slurry concentrations and fit references. Table 4.6 quantifies the differences in

spectra that are evident in Figure 4.9.

Figure 4.9 shows that the experimental (measured) spectra and fitted spectra matched
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(a) (b) SiO2 ZrSiO4SiO2 ZrSiO4
CaSiO3

Mg2SiO4Mg2SiO4

CaSiO3

Figure 4.9: Two different Raman Experiments a) and b) fit using ICLS and predicted using
gravimetric measurements.

Table 4.6: Prediction accuracy of Raman spectra from Figure 4.9 using a PLSR model
(concentrations in g/kg solvent).

Method Kyanite Wollastonite Olivine Silica Zircon

Fig. 7a Predicted 81.58 25.57 33.91 146.61 19.71
Fig. 7a Gravimetric 81.41 16.97 41.67 142.03 18.67
Fig. 7b Predicted 57.96 39.33 18.31 120.80 25.50
Fig. 7b Gravimetric 64.69 41.96 11.09 135.68 32.10

each other closely. In Figure 4.9b, the predicted spectrum did not match the measured

spectrum as closely as is the case in Figure 4.9a. The predicted spectrum overpredicted the

slope of the background in Figure 4.9b, which correlated closely with kyanite concentra-

tions. This indicated a negative deviation from the Beer-Lambert Law for kyanite in this

experiment. The deviation resulted in under-prediction of kyanite in this sample, as shown

in Table 4.6. Another example was seen with the sharp peak at 1400 cm−1 correspond-

ing to zircon, which was more prominent in the linearly-predicted (yellow curve) spectra

than in the experimental spectra (red curve) in Figure 4.9b. This similarly suggested a

negative deviation from linearity for zircon, and likewise appeared as a under-prediction in

Table 4.6.

Parity plots showing the quantification of silicate solids concentration with ±20% bounds

in dashed lines are shown in Figure 4.10. Notably, kyanite and wollastonite showed the best

prediction performance with R2 values of 0.932 and 0.912, respectively. Silica and zircon
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had slightly less-accurate quantification with R2 values of 0.885 and 0.837, respectively.

Olivine was predicted with the least accuracy, showing an R2 value of 0.527. A pattern

can be seen in the parity plots of Figure 4.10, where the PLSR model underpredicted solid

densities at high solids content. This effect was most prominent in zircon quantification,

though it may have been present in the predictions of other species as well. One possible

explanation for this apparent patterning may have been the loss of quantification linearity

at high solids content, explored in Chapter 5.

R2 = 0.932 R2 = 0.912 R2 = 0.527

R2 = 0.885 R2 = 0.837

(a) (b) (c)

(d) (e)

Figure 4.10: Parity plots (showing ± 20% bounds) of major insoluble silicate quantification
using Raman spectra input into a PLSR model with 10 latent variables for a) kyanite, b)
wollastonite, c) olivine, d) silica, and e) zircon.

From residual plots for solids (Figure 4.11), patterned residuals can be seen at high

solids concentrations for all quantified silicates. This indicated that a PLSR model did not

adequately model the relationships between inputs (spectra) and outputs (concentrations)

at higher slurry concentrations. Figure 4.11 also suggested the nonlinear behavior may

have been component-specific. For example, the zircon residuals appeared to undergo

a transition around 25 g solid/kg solvent, where the model began to underpredict solids

concentrations. In contrast, kyanite appeared to undergo an analogous transition around 60

g solid/kg solvent. Further analysis was limited by model noise obscuring residual trends.
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(a) (b) (c)

(d) (e)

Figure 4.11: Residual plots of insoluble silicate quantification using Raman spectra input
into a PLSR model with 10 latent variables for a) kyanite, b) wollastonite, c) olivine, d)
silica, and e) zircon.

The poor quantification of olivine may have been attributed to its low abundance in the

slurry and obscured spectral features. Zircon, despite its similarly low slurry concentration,

was highly Raman-active in the region studied with a prominent peak at 1378 cm−1. Due

to low SNR of Raman in these slurries, olivine quantification may have been improved

by including measurements with higher proportions of olivine. Four accuracy metrics —

MAE, RMSE, CI95%, and MPE — are listed in Table 4.7. Independence of the quantified

chemical species is depicted in Chapter F.

Table 4.7: Solid quantification accuracy with Raman.

Metric Kyanite Wollastonite Olivine Silica Zircon

Mean Absolute Error (g/kg solvent) 4.57 5.66 5.20 13.53 2.52
Root Mean Squared Error (g/kg solvent) 6.04 7.88 6.95 17.29 3.68
95% Confidence Interval (g/kg solvent) 9.15 16.18 12.80 28.58 7.40
Mean Percent Error (%) 16.5 16.7 39.4 18.2 21.4
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Solid Phase Quantification with Raman Spectroscopy after Savitzky-Golay Filtering

Optionally, the first derivative could be taken of Raman spectra to minimize baseline

shifts caused by fluorescence. This was done as a proof-of-concept with a Savitzky-Golay

filter with a second-order polynomial, 19 filter points, and a first derivative. For the spectra

utilized in this work, 11 filter points or fewer resulted in noisy derivative spectra. The

spectra after filtering are shown below in Figure 4.12 and quantification results are shown

in Table 4.8. As can be seen in Table 4.8, quantification was improved after Savtizky-Golay

filtering for wollastonite, olivine, silica, and zircon. Kyanite quantification, however, was

less accurate after filtering. These results show promise for the Savitzky-Golay filter to

preprocess noisy and varied Raman spectra for more accurate quantification.

Figure 4.12: All Raman spectra of training and testing data when Savitzky-Golay filter has
been applied.

Table 4.8: R2 values of predictions for quantified insoluble species with and without Sav-
itzky–Golay filtering on Raman spectra.

Concentrations (g/kg solvent) Kyanite Wollastonite Olivine Silica Zircon

R2 (No filtering) 0.932 0.912 0.527 0.885 0.837
R2 (Filtering, 1st derivative) 0.912 0.916 0.770 0.905 0.863
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Experimental Reproducibility for Raman Spectra

A total of 34 replicate measurements were collected using slurries that were constructed

and measured at least 11 (and no more than 15) days after the original data appearing in

the main text (Figure 4.4b). As can be seen in Figure 4.13a, there was a baseline offset

in some measurements, with the greatest difference in a measurement being 1495 counts

(Figure 4.13b). The average difference between the original measurement and its replicate

across the 34 measurements was 239.6 counts (or 1.24% difference from original measure-

ments). The difference between replicate measurements also showed high-frequency noise

in addition to baseline offset. The replicate data were also quantified via the same PLSR

model as used earlier in this section with and without Savitzky-Golay spectra preprocess-

ing, shown in Figure 4.14. Quantification with Savitzky-Golay preprocessing appeared to

be more precise since a vertical offset appeared in the predictions of the raw spectra. This

result agreed with the offset that can be seen in the replicate spectra. Based on these data,

we conclude that both our experimental methodology and our Raman apparatus were robust

to within a relatively small baseline offset for experimental replicates.

(a) (b)

Figure 4.13: a) Original spectra and replicate spectra collected for 34 replicate measure-
ments ranging from 0 to 25 wt% solids, and b) the difference between original and replicate
spectra.
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Figure 4.14: Parity plots showing PLSR predictions of original and replicate (a–e) raw
spectra and (f–j) spectra passed through a 19-point Savitzky-Golay filter.

4.4 Conclusion

Establishing accurate models and conceptual feasibility of monitoring dense slurry so-

lutions is important for nuclear-waste management and many other systems. The present

work shows that instrumentation employing ATR-FTIR technology can accurately estimate

the concentrations of key solutes in the liquid (solution phase) portion of a slurry contain-
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ing a high concentration of suspended solids with a mean accuracy of 3.52%. Companion

results using Raman spectroscopy facilitate an ability to distinguish and quantify different

species suspended in the solid phase with a mean accuracy of 18.21% for the four most

abundant and spectroscopically active silicates. While this work demonstrates the feasibil-

ity of Raman and ATR-FTIR spectroscopies for monitoring slurries typical of nuclear-waste

processing, the wide application breadth of these instruments does not limit the bearing of

these results to the highlighted application of this thesis.

The results of this chapter can also be extended. For example, the complex data ob-

served by the Raman spectrometer in this study may be able to be understood better by

using complementary information from the ATR-FTIR probe so that known solution-phase

peaks can be subtracted from the multiphase Raman spectra. Additionally, the results pre-

sented in this chapter are limited to linear methods primarily because of the many features

and few data collected, which is limited by the experimental collection procedure; nonlin-

ear models may require more data. Lastly, the suspended insoluble phase of the slurries

presented in this chapter maintain a constant particle size distribution; this assumption may

not hold true in actual nuclear-waste processing and may affect the measurements observed

by the instruments.
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CHAPTER 5

NONLINEAR METHODS FOR MEASURING OPTICALLY-DENSE SLURRIES

AND ATTENUATING MEDIA WITH RAMAN SPECTROSCOPY

In the previous chapter, Raman spectroscopy and attenuated total reflectance - Fourier

transform infrared (ATR-FTIR) spectroscopy were combined with linear models (partial

least squares regression (PLSR)) to quantify dense multicomponent slurries; the data seemed

to suggest nonlinearities were present despite linear methods providing satisfactory quan-

tification. Therefore, this chapter investigates physics-based nonlinear models to predict

concentration from slurry spectra. Attenuation — reduced signal because of the interfer-

ence of turbid media — is well-reported in the literature. However, there seems to be no

accepted trend between concentration and attenuation, especially in multicomponent slur-

ries. This gap is an issue for modeling attenuation behavior.1

In this chapter, an analysis is performed using a photon balance on media contain-

ing attenuating particles. However, the resulting model has an unknown dependence on

concentration with essentially no literature investigating the concentration dependence of

attenuation (nonlinearities). Therefore, two simplified models are created: 1) an optically

saturated model and 2) a variable pathlength model. The two models rely on 1) using mass

fraction of the suspended phase rather than of the entire slurry and 2) transforming spec-

tra and concentration data using the natural logarithm, respectively. The two models are

demonstrated on a Raman spectral data set from a system consisting of suspended solids in

solution that mimic conditions expected in nuclear-waste processing at Hanford.

1Some of the content and some of the figures in this chapter are reproduced from conference proceedings
from Crouse et al. [28]
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5.1 Introduction

A Waste Treatment Plant (WTP) is being constructed by the United States Department

of Energy in Hanford, Washington as detailed in Section 1.2. Difficulties from suspended

solids challenge the implementation of real-time in-line monitoring in slurry streams that

may have substantial solid content at Hanford. Raman spectroscopy has been shown to

measure both the solid and liquid phases in many systems. However, at high concentra-

tions of suspended solids, Raman spectroscopy becomes less effective at measuring both

the liquid and solid phases of slurries (see Chapter 4). Suspended solids tend to scatter

and absorb photons, rather than acting as an optically transparent medium that is typically

assumed with linear models. Two models are proposed in this chapter that may model pho-

ton transport in slurries and enable more accurate quantification of suspended solids in a

studied slurry system. These are: 1) an optically saturated model and 2) a variable path-

length model. The optically saturated model makes the assumption that a fixed number

of Raman-scattered photons are detected at high densities of suspended solids. Under this

scenario, relative concentrations ( Ci∑n
j=1 Cj

) better correlate to spectral features than absolute

concentrations (Ci). The second model, the variable pathlength model, is motivated under

the assumption that the Raman laser will not penetrate as deeply into the solution when an

optically dense sample (consisting of suspended particles) is probed, thus creating a laser

pathlength that has a power-law dependence on the concentration of suspended particles.

This scenario will violate the common assumption of constant interrogation volume that is

required for a linear relationship between Raman spectral intensity and solids concentra-

tion. These ideas are developed and tested in the subsequent sections.

107



Chapter 5. Nonlinear Methods for Raman Attenuation Steven H. Crouse

5.2 Method and Materials

5.2.1 Experimental Procedure

This system is identical to the data used in Chapter 4, but is summarized here again.

The system is based on a variation of the 5.6 M Na low-activity waste (LAW) pretreatment

system simulant (solution) [21] combined with simulated glass-forming chemical (GFC)

recipes (mostly metal oxides and silicates) [112]. This combined system serves as a high-

level waste (HLW) simulant, since the suspended solids mimic particles in HLW processing

and HLW will have a similar solution-phase composition with LAW. The solution-phase

simulants are comprised of water, sodium hydroxide, and seven sodium salts: nitrate, ni-

trite, carbonate, sulfate, phosphate, oxalate, and acetate. The GFC compositions were

formulated by M.J. Siegfried and M.E. Stone and were provided by the Savannah River

National Laboratory (SRNL) [112]. Glass-forming chemicals (GFCs) are comprised of

five silicates: silica, kyanite, wollastonite, olivine, and zircon; five oxides: hematite, tin

oxide, rutile, vanadium pentoxide, and zinc oxide; and three additional species: boric acid,

lithium carbonate, and glucose. All experiments were conducted at 3 m NaOH to simulate

the basic conditions expected at the Hanford WTP. At this molality of sodium hydroxide,

the pH remained above 13 for all experiments, which was verified with an in-situ pH probe.

All experiments were temperature-controlled to 25 °C and stirred at 400 rpm to maintain

suspension of solids inside a 250 mL Teflon reactor.

5.2.2 Instrumentation

Raman spectra were recorded with a Mettler Toledo ReactRaman 785 using a 785 nm

laser at 300 mW power, 1 s exposure time, 10 averaged spectra, and a spectral resolution

of 6 cm−1. The probe tip is constructed of sapphire, leading to the three peaks present in

every measurement located at: 419 cm−1, 577 cm−1, and 751 cm−1. The probe tip was a

“ball probe” design [116]. This setup allows solutions and slurries to be measured without
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the requirement of a flow cell.

5.2.3 Partial Least Squares Regression

This chapter uses a linear model, PLSR, for quantification after linearizing data us-

ing the optically saturated model or variable pathlength model developed. PLSR is well-

developed as a viable model in nuclear-waste spectroscopic monitoring literature and is

described in Chapter B. No data scaling (other than noted to linearize data) was applied

prior to quantification in this chapter.

5.3 Theory

In this section, prior literature on attenuation is used to develop a general model for

attenuation in slurries. This model assumes the slurry is a continuum, and therefore treats

the slurry medium as having constant attenuating properties everywhere. A conceptual

model of attenuation behavior is presented in Figure 5.1.
a) b) c)

Figure 5.1: Visualization of attenuation as the density of solid particles increase in a slurry.
Solid density increases as viewed from (a) to (c) while the effective laser pathlength de-
creases.

5.3.1 Derivation of Optical Attenuation Model

Attenuation has been introduced elsewhere and is usually taken as the sum of photon

absorption and scattering (elastic scattering rather than Raman scattering) [130, 131, 90].
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These two terms are often combined into a single attenuation parameter.

αabsorbed + αscattered = α (5.1)

From McCreery, the equation for determining the intensity of a Raman signal in opti-

cally transparent solutions is [90]:

S(e−) = CP0βKADΩDTQts (5.2)

where S(e−) is the detector signal in electrons, C is the density of molecules in molecules
cm3 ,

P0 is incident laser photon flux in photons
cm2s , β is the differential Raman cross-section in

cm2

molecule×sr , K is a geometric factor (pathlength) in cm, AD is sample area monitored

by the spectrometer in cm2, ΩD is solid angle observed by the spectrometer in sr, T is a

transmission factor in photon
photon (unitless), Q is quantum efficiency of the detector in e−

photon,

and ts is integration time in s.

For any Raman-scattered photon in a turbid solution, the photon may be absorbed or

scattered before Raman scattering (αL) or after Raman scattering (αR). Below, a photon

balance is performed in the z-direction in a box with width W and height H for photon flux

in the z-direction, P .
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In − Out − Laser Attenuation − Raman Attenutation = 0 (5.3)

αL = αL, absorbed + αL, scattered , αR = αR, absorbed + αR, scattered (5.4)

WHP |z=z+∆z−WHP |z=z= −WH∆z(αL + αR)P (5.5)

lim
∆z→0

(
P |z=z+∆z−P |z=z

∆z

)
=

dP

dz
= −(αL + αR)P = −αP (5.6)∫

dP

P
=

∫
−αdz (5.7)

P (z) = Be−αz , P (0) = P0 (5.8)

P (z) = P0e
−αz (5.9)

where P is the photon flux through any cross section W ×H at depth z from the laser, P0

is the photon flux from the tip of the laser, and B is an integration constant. The photon

shell balance is shown in Figure 5.2.

W

H

dz

Solid Particles are 
approximated as a 
continuous medium

Laser attenuates 
in medium 

0

L
z

x

y

0
0

Raman-scattered light
attenuates in medium 

Figure 5.2: Photon balance for a Raman spectrometer. Both the Raman laser and the
Raman-scattered light are attenuated as a function of depth in the medium.
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Attenuation in Observed Signal

Attenuation can be inserted into the Raman quantification equation (Equation 5.2) by

introducing effective pathlength, K, as is shown by McCreery [90]:

S(e−) =

∫ L

0

P0CβADΩDTQtse
−αzdz (5.10)

K(λ) =

∫ L

0

e−αzdz =
(1− e−α(λ)L)

α(λ)
(5.11)

In Equation 5.10, Raman-scattered photons per unit area are integrated over the pathlength,

0 to L, in the direction of the laser. The expression can be simplified by combining the

pathlength-dependent terms (attenuation) into a single variable representing the pathlength,

K (units of cm). Then, the integral can be evaluated to give effective pathlength in attenu-

ating media, as shown in Equation 5.11. This pathlength, K, can be verified by computing

the limits in the case of infinite (Equation 5.12) and no attenuation (Equation 5.13) with

L’Hôpital’s rule.

lim
α(λ)→∞

K(λ) = lim
α(λ)→∞

(1− e−α(λ)L)

α(λ)
= 0 (5.12)

lim
α(λ)→0

K(λ) = lim
α(λ)→0

(1− e−α(λ)L)

α(λ)

L’Hôpital
−−−−−−→
w.r.t. α(λ)

lim
α(λ)→0

Le−α(λ)L = L (5.13)

As the model approaches infinite attenuation, the predicted pathlength approaches zero.

The opposite scenario, no attenuation, predicts the pathlength to approach L. Both of these

results match intuition.

The product of transparent pathlength and attenuation (α(λ)L) that appears in Equa-

tion 5.11 is a dimensionless measure of attenuation; a large product indicates that few

photons travel the full pathlength (L) of the uninhibited laser. Additionally, if α(λ)L >> 1
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(i.e. the system is strongly attenuating), then an assumption can be made that (e−α(λ)L) ≈ 0

in Equation 5.11 [90]. The assumption of strongly attenuating media will made for now;

this gives the following two equations:

K(λ) =
1

α(λ)
(5.14)

S(e−) = P0KCβADΩDTQts (5.15)

Complete Attenuation Model

Equation 5.16 show the signal reaching the Raman detector as a function of the den-

sity of particles, Ci, and an unknown attenuation parameter, α(λ); all other variables are

assumed to not be functions of concentration.

S(λ) =

∑n
i=1 wiCi

α(λ)
, wi = PDβ(λ)ADΩDTQ(λ)ts (5.16)

The key point of this analysis is that the denominator term, α(λ), is expected to have a

concentration dependence: α(λ) = f(C, λ;θ) where C is a 1 × n vector of component

densities and θ is a vector of model parameters. However, the form of concentration de-

pendence is unknown and is not part of McCreery’s analysis [90]. The contribution of this

chapter is the development of simplifying assumptions that can be made based on physical

understanding of the system that account for concentration-dependent attenuation. Addi-

tionally, experimental data collected of slurry samples may provide insight into which of

these models (if any) may be valid for modeling spectra of slurry systems. Equation 5.16

will be the starting point for both the optical saturation model and variable pathlength

model. The following assumptions are made so far:

• A continuum assumption is made in the analysis; individual particles are approx-
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imated as contributing to bulk properties of the slurry, such as optical attenuation

α(λ).

• The system is strongly attenuating, α(λ)L >> 1.

• Photons may be scattered or absorbed as part of the excitation laser, αL(λ) or as part

of Raman-scattered photons, αR(λ). These effects can be combined as a combined

attenuation term as shown elsewhere, αL(λ) + αR(λ) = α(λ) [90].

• The variables captured by w in Equation 5.16 do not vary between sample measure-

ments.

5.3.2 Optical Saturation Model

Assume that a constant number of photons reach the detector; this can be modeled

by assuming attenuation, α(λ), has a linear dependence on concentration. In this case,

increasing the concentration of all species by a proportional amount should not change

the acquired signal; the total returned signal (photons) is constant. However, changing the

proportion of solid particles would change the detected signal. Near-constant signal was

observed in the previous chapter, Chapter 4, when increasing the density of solid particles

past a certain point had negligible changes in measured intensity. Physically, this may occur

since the interrogated volume decreases with a proportional increase in concentration; i.e.

all of the Raman laser is already contacting solid particles and so increased concentration

will move the mean pathlength shorter, but the same number of solid particles (surface area)

will be detected. Therefore, it is expected that mass fraction rather than density would be

responsible for the observed signal.

Assume that attenuation parameter depends linearly on concentration, as described by

Baker and Lavelle [132], and that attenuation effects are additive (which follows from the

assumption of linear attenuation in Equation 6.3). Summing the attenuation of multiple
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species attenuation with a linear dependence on concentration, where there are n attenuat-

ing species:

α(λ) = f(C, λ;θ) =
n∑

i=1

θi(λ)Ci (5.17)

where θi(λ) is a wavelength-dependent parameter that depends on the optical properties

of the material being interrogated. If the assumption is made that particles have roughly

equivalent attenuation per unit mass (as may be the case in a geometric “shadowing” of

particles), θ1 ≈ θ2 ≈ ... ≈ θn ≈ θ, θ can be isolated as its own variable and mass fraction

(Yi)2 rather than density (Ci) is related to signal:

S(λ) =
n∑

i=1

w⋆
i (λ)Yi , w⋆

i (λ) = PDβ(λ)ADΩDTQ(λ)tsθ
−1 (5.18)

This linear model is a function of mass fraction, Yi, which has units g component i
g total solids

. Thus

far, Equation 5.18 relies on two new assumptions:

• Attenuation varies linearly with concentration.

• Attenuation is species-independent: θ1 = θ2 = ... = θn = θ.

5.3.3 Variable Pathlength Model

A variable pathlength model was also investigated that assumed an empirical power

law for the concentration dependence of attenuation. A power-law form is motivated by

analogous power-laws derived for monosized, spherical particles [17], [18]. Shavishankar

et al. propose a form for suspended particles where inter-particle distance is a function of

particle volume fraction to the −1
3

power. In the currently studied system, the particles

2The denominator in Equation 5.16 becomes θ
∑n

i=1 Ci, and so each component’s density, Ci, in the
numerator of Equation 5.16 is divided by the total density to yield mass fraction, Yi.
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are non-spherical and polysized. An identical relationship (power-law) is assumed here.

However, the assumptions of developed models (monosized, spherical particles) do not

apply to the currently studied system, so the parameters will be determined from the data.

A power law for the attenuation coefficients are shown as

α(λ) =
n∑

i=1

θi(λ)C
γi
i (5.19)

where γi is an exponent to be determined from data. This gives the quantification equation

(beginning oncemore with Equation 5.16):

S(λ) =

∑n
i=1wi(λ)Ci∑n
i=1 θi(λ)C

γi
i

(5.20)

If the additional assumption is made (motivated in the bullet points below) that a single

component is present in the insoluble phase (n = 1), Equation 5.20 simplifies to

S(λ) =
wi(λ)Ci

θi(λ)C
γi
i

= w†
i (λ)C

1−n
i (5.21)

which can be simplified via logarithms to yield a linear equation:

ln(S(λ)) = ln(w†
i (λ)C

1−n
i ) = (1− n) ln(Ci) + ln(w†

i ) (5.22)

Equation 5.22 suggests that a log-log plot may be linear in the case of an attenuating

mixture where attenuation has a power-law dependence on concentration. In this section,

two additional assumptions are made:

• Attenuation has a power-law relationship with concentration (i.e. α(λ) =
∑n

i=1 θi(λ)C
γi
i )

• A single component is present in the insoluble phase.

– While seemingly prohibitive to multicomponent slurries, this assumption may
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be valid when peak selection or feature selection is performed and so a sin-

gle component primarily contributes to the signal/attenuation at a particular

wavenumber.

5.4 Results and Discussion

The two model structures proposed in Section 5.3.2 and Section 5.3.3 were tested using

the slurry dataset collected in Chapter 4.

5.4.1 Optically Saturated Model

Figure 5.3 (bottom row) shows the quantification of the slurry system with an optically

saturated (Equation 5.18) quantification model, while Figure 5.3 (top row) shows quan-

tification of the original data (Equation 5.2). The optical saturation model used relative

concentrations g solid i
g total solids

rather than density.3 Figure 5.3 shows that the optically satu-

rated model performed better than a PLSR model with no data transformation. The R2

values of the optically saturated model (Figure 5.3, bottom row) were higher than the R2

values of the untransformed data (Figure 5.3, top row), with the exception of wollastonite.

This may suggest that the assumptions made in the optically saturated model were more

applicable to quantification in this system than that of linear Raman quantification. In this

system, composition appeared to better correlate with Raman spectra than absolute concen-

trations correlated with Raman spectra. However, direct comparison between the optically

saturated model and the untransformed model was limited because the optically saturated

model output relative concentration (mass fraction), whereas the untransformed model out-

put absolute concentration. For nuclear-waste processing, other measurements (volume,

density, etc.) may allow the use of mass fraction measurements since they appeared to

correlate better with observed Raman signal for most species of interest.

3 g solid
kg solvent was used for linear quantification and correlated very closely with density in these slurries; this

quantity is typically used rather than density ( mass
volume ).
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R2 = 0.865 R2 = 0.843 R2 = 0.767 R2 = 0.846

R2 = 0.900 R2 = 0.831 R2 = 0.904 R2 = 0.889

Figure 5.3: Parity plots of PLSR quantification of Raman spectra with (top row) original
data (absolute concentration) and (bottom row) mass-fraction data (relative concentration).

5.4.2 Variable Pathlength Model

The variable pathlength model (Equation 5.22) was implemented by logarithmically

transforming spectra and concentrations for model fitting and prediction. Figure 5.4 shows

the quantification of four silicates: kyanite, wollastonite, silica, and zircon. Figure 5.4 (top

row) shows quantification using the original Raman and concentration data. Figure 5.4

(bottom row) logarithmically transforms both the Raman spectra and the concentrations,

representing the variable pathlength model from Equation 5.22. Overall, no significant im-

provement or detriment to quantification accuracy was observed by logarithmically scaling

data prior to quantification. Specifically, quantification was improved for kyanite, while

less effective quantification was observed for silica and zircon. Wollastonite had marginal

quantification changes between the standard model and the logarithmically transformed

model.

Figure 5.5 shows residual scatter as a function of measured concentration for both the

standard model (original data) and a variable pathlength model (log-log data). At low mea-

sured concentrations of solids, the variance of prediction error decreased when applying a
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R2 = 0.865 R2 = 0.843 R2 = 0.767 R2 = 0.846

R2 = 0.885 R2 = 0.842 R2 = 0.561 R2 = 0.833

Figure 5.4: Parity plots of PLSR quantification of Raman spectra with (top row) original
data and (bottom row) data after undergoing a log-log transformation.

logarithmic transform to the data. This may suggest the applied variable pathlength model

was most applicable in the low-concentration regime, but did not correct for model error at

high solids loading. Zircon, quantified using original data (Figure 5.5 (top row)), showed

patterned residuals that under-predicted at low concentrations, over-predicted at interme-

diate concentrations, and under-predicted at high concentrations. As shown by Figure 5.5

(bottom row), a logarithmic transform removed this patterned model bias, but did not im-

prove overall model performance. Silica was notably quantified less accurately after the

logarithmic transformation in Figure 5.5 (bottom row).

5.4.3 Analysis

The improved quantitative performance when using the optically saturated model indi-

cated that there may be approximately a fixed number of detected photons at high densities

of suspended solids (signal is near-constant with increasing slurry concentrations). While

the concentration (density) of particles increases, the pathlength of light also decreases as

the suspended particles become more closely packed and scatter/absorb more light, leading

to a near-constant number of detected photons. The optically saturated model also assumes
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Figure 5.5: Residual plots of PLSR quantification of Raman spectra with (top row) original
data and (bottom row) data after undergoing a log-log transformation.

that the particles contribute equally to optical opacity, and this does not seem to be a poor

assumption based on the model performance on the system studied. Particle size and mor-

phology were held approximately constant and not studied in this chapter, but particle size

may have a significant effect on the Raman spectra. Further work in this area may deter-

mine whether constant particle size and morphology effects are important for an optically

saturated model.

The author of this thesis performed several tests attempting to fit attenuating data to a

general attenuation model including component-specific attenuation (i.e. θ1 ̸= θ2... ̸= θn).

This model has the form:

S(λ) =

∑n
i=1 wiCi∑n
i=1 θiC

γi
i

, wi = PDβ(λ)ADΩDTQ(λ)ts (5.23)

The goal with fitting this equation to data is that the data would suggest the best fit. With

the limited number of slurry experiments available (66 experiments), the fitting was un-
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satisfactory and a richer dataset is likely required. Equation 5.23 can serve as a guide

for data-driven schemes that are better suited for quantification in attenuating/turbid media

than linear models. However, such a model might be unwieldy for practical use.

5.5 Conclusion

Nuclear-waste slurries present challenges for implementing traditional process analyti-

cal technology (PAT) for process monitoring, such as high-solid content and multicompo-

nent solutions. In this chapter, two new quantification models, an optically saturated model

and a variable pathlength model, have been developed and tested on Raman spectra of a

model nuclear-waste system. Based on model performance on experimental slurry data, it

was determined that the assumptions of an optically saturated (relative density) model out-

performed both traditional models and a variable pathlength model. However, the variable

pathlength model had accurate predictions at relatively low amounts of total solids studied

in this system. This result suggests that a linear attenuation approximation correlates better

to spectra at high concentrations, while a power-law approximation of attenuation may hold

better at low concentrations. A hybrid model combining these two models may have phys-

ical significance and engineering use. The modeling results of this chapter may improve

the analysis of slurries typically seen in nuclear-waste processing and related industries.
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CHAPTER 6

MODEL-BASED FAULT DETECTION

The previous chapters in this thesis have focused on the measurements obtained from

vibrational spectroscopy. In this chapter, measurement is related to the process that it is

observing; a mass-balance model of a three-tank system of vessels housing slurries (i.e.

nuclear waste) is developed. By combining measurement with this model, both state esti-

mation (similar to prior chapters) and parameter estimation (new) are possible. This chapter

specifically focuses on a mixing fault that may occur when transferring slurries from one

vessel to the next with the presence of (untransferred) heel masses. The dual-Kalman fil-

ter is motivated for this application and investigated as a means to monitor this previously

unstudied, but plausible and important, fault.1

In chemical batch reactors (including non-radioactive processes), proper mixing is im-

portant for consistent process and product quality. Heel masses (mass that is left behind

from batch to batch) can be a feature of process design, or may occur inadvertently. The

current practice at the Hanford nuclear-waste processing site is to include heel masses (up

to 30% by volume) to reduce batch to batch variation of chemical waste that will be vitri-

fied. To monitor this process, the proposed process uses laboratory measurements with a

mass balance to propagate composition estimates from tank to tank. Incorporating in-line

monitoring tools allow for faults relating to the heel mass to be detected when they occur in

processing. Observability of model states and parameters are shown and encourage the use

of real-time sensors in each vessel at Hanford. A simulation study was performed based

on reported data on expected tank concentrations, sensor accuracies, and analytical labora-

tory accuracies. By incorporating in-line sensors, the mean absolute error (MAE) for the

1Some of the content and some of the figures in this chapter are reproduced from conference proceedings
from Crouse et al. [32]
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heel mass of kyanite, an insoluble solid, is improved by a factor of 3.88 over mass-balance

model approaches in a simulation study including a fault in heel mass.

6.1 Introduction

To create a stable and optimal glass form from a nuclear-waste slurry at the Hanford

site, waste loading must be considered as a function of the waste’s composition and physical

properties. Currently, the process at Hanford is expected to utilize a Monte-Carlo mass-

balance model that may be combined with laboratory measurements taken of the incoming

waste stream (before processing) and prior to being melted [10, 39]. An effect that has to

be incorporated into any mass balance at the Hanford Site are heels, which are material that

remain in the original tank after some material is transferred to the next tank. Heels enable

efficient processing with slurries that may be difficult to transport while also decreasing

batch to batch variation [11]. At Hanford, heels are expected to be in excess of 30% by

volume for some tanks [10]. The heels are susceptible to changes with time due to varying

mixing performance or tank transfer efficiency. A feed-forward modeling structure, as

has been proposed with a mass-balance approach, will not allow the process to adapt to

changing processing conditions and to detect process faults [15]. Additionally, laboratory

measurements can incur measurement delays, preventing prompt detection of abnormal

process conditions. In this chapter, real-time monitoring (optical spectroscopy) probes

are investigated as complementary tools to mass balance models for detecting changes in

mixing performance in batch reactors with heels.

In order to detect some process faults, including faults in heel mass composition, real-

time sensors at Hanford must simultaneously estimate uncertain process states and identify

uncertain process model parameters. To solve this simultaneous state estimation and pa-

rameter identification problem, a dual Kalman filter framework was used, where chemical

compositions (states) and mixing/transfer performance (model parameters) are estimated

simultaneously from a mass-balance model and plant measurements. Three processing
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structures were investigated within the dual Kalman filter framework: an entirely feed-

forward mass-balance approach, a mass-balance approach with a confirmation laboratory

measurement, and a mass-balance approach with a laboratory measurement or in-line spec-

troscopic measurements at each tank. A “sudden change” fault scenario was investigated

with regards to mixing performance (model parameters). For the present chapter, results on

kyanite (an insoluble component that accumulates in the heel) and sodium nitrate (a soluble

component hypothesized to not accumulate in the heel) are presented.

6.2 Non-ideal Mixing in Batch Reactors

In the presence of poor mixing and dead-zones, slurries within a batch reactor may not

be spatially uniform. Poor mixing can lead to error from a predictive mass balance model

when mass is transferred from tank-to-tank. A mass balance model is constructed in this

section that incorporates poor mixing and heel masses.

6.2.1 Mass Balance for Batch Reactors in Series

For batch chemical reactors in series, a mass balance can be constructed around each

species in each tank as a function of time, mi
k,t. Variable i is the chemical species, k is the

tank number in the series, and t is the time index or batch number. There are s chemical

species, v tanks, and T timepoints. The feed to the first of the batch reactors is mi
0,t. Based

on the measured composition of waste in the tanks, a control action, gik,t, is taken that adds

mass to each tank. The mass balance for all species in all tanks in a series of batch reactors

is shown in Figure 6.1 and can be written as a mass balance including heels (Equation 6.1)
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with nonnegative concentrations (Equation 6.2):

mi
k,t+1 = (1− αi

k−1,t)m
i
k−1,t + αi

k,tm
i
k,t + gik,t (6.1)

mi
k,t ≥ 0 (6.2)

for i = 1, 2, ..., s

for k = 1, 2, ..., v

for t = 1, 2, ..., T

where αi
k,t is a time-varying parameter representing the heel mass (for a single species,

tank, and batch) that remains after transfer to the next tank. The heel mass fraction is

bounded between zero and one:

0 ≤ αi
k,t ≤ 1

for i = 1, 2, ..., s

for k = 1, 2, ..., v

for t = 1, 2, ..., T

(6.3)

Figure 6.1: General mass balance of a batch system where each tank has a control input, g,
and a heel mass (shown as a recycle stream) determined by a parameter α.

Equation 6.3 shows that αi
k,t describes the fraction of mass (for a single species, tank, and

batch) that remains in the tank after batch transfer is complete (Equation 6.1).

Equation 6.1 is linear with respect to mi
k,t and linear with respect to αi

k,t. The dual

Kalman filter allows Equation 6.1 to be treated as a function of mi
k,t while αi

k,t is held
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constant. An analogous problem is then solved whereby αi
k,t is allowed to vary while mi

k,t

is held constant. A nonlinear model can be addressed by using the dual extended Kalman

filter, or by using an unscented Kalman filter [133, 134, 135, 136].

Some assumptions are made to restrict the general series batch reactor system (Equa-

tion 6.1–6.3) to model the system at Hanford: there are three tanks in the series of batch

reactors (Equation 6.4), there is no heel in the liquid supernate of Tank 1 (Equation 6.5),

the only control actions are glass-forming chemical (GFC) additions in the second tank

(Equation 6.6), and the control actions are nonnegative (Equation 6.7):

v = 3 (6.4)

αi
k,t = 0 when k = 1 (6.5)

for i = 1, 2, ..., s

for t = 1, 2, ..., T

gik,t = 0 when k ̸= 2 (6.6)

for i = 1, 2, ..., s

for t = 1, 2, ..., T

gik,t ≥ 0 when k = 2 (6.7)

for i = 1, 2, ..., s

for t = 1, 2, ..., T

A mass balance is constructed assuming no chemical or nuclear reactions of the mon-

itored species. The three tank system — Tank 1, Tank 2, and Tank 3 — corresponds to

physical tanks at the Hanford Site directly prior to the melter that produces the glass. Rep-

resentative concentrations and process vessel sizes are based on values from Vienna and

Kim and modified to make each tank equivalent in process mass [39]. The nominal ves-
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sel compositions used in the simulated study are shown in Table 6.1. The mass balance

equations after the simplifying assumptions of Equation 6.4–6.7 are:

mi
1,t+1 = mi

0,t

mi
2,t+1 = mi

1,t + αi
2m

i
2,t + gi2,t

mi
3,t+1 = (1− αi

2)m
i
2,t + αi

3m
i
3,t

for i = 1, 2, ..., s

for t = 1, 2, ..., T

(6.8)

where the nonnegativity from Equation 6.7 still applies.

6.2.2 Simulation

A simulation study was performed where the species and compositions in Table 6.1

are used as initial conditions and subsequently propagated through the mass balance of

Equation 6.8. The following sections motivate assumptions made in the simulation. The

simulation is shown in Figure 6.2, with the role of the dual-Kalman filter in relation to the

plant shown in Figure 6.1.

Plant

u

y

Dual 
Kalman
Filter

Control 
Law

r x"	, θ&

x"

To OperatorsFrom Operators

Figure 6.2: The role of the dual-Kalman filter in process feedback; the dual-Kalman filter
relies on process measurements and a system model.
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6.2.3 Optical Spectroscopy and Offline Measurements

To measure the species in Table 6.1, two analytical techniques are expected in the on-

site analytical laboratory at the Hanford site. Inductively coupled plasma - atomic emission

spectroscopy (ICP-AES) can measure elemental species and will be used to measure boron

(boric acid), silicon (silica), aluminum (kyanite), and calcium (wollastonite) within a rel-

ative percent difference of ≤20% [137]. Ion chromatography (IC) can measure soluble

molecular species and will be used to measure nitrate, nitrite, carbonate, and sulfate within

a relative percent difference of ≤20%. In this chapter, a ±20% range about the mean is

assumed to correspond to ±3 standard deviations about the mean for that component. The

analytical laboratory accuracy is shown in the “offline” column in Table 6.2.

The accuracy of optical in-line sensors is based on reported values for attenuated total

reflectance - Fourier transform infrared (ATR-FTIR) spectroscopy and Raman spectroscopy

[19]. Full covariance matrices are used for spectroscopic prediction accuracy. ATR-FTIR

has shown the ability to measure solution phase compositions in slurries, and so will be

simulated to measure soluble nitrate, nitrite, carbonate, sulfate, and borate anions. Raman

spectroscopy, meanwhile, has been shown to measure solid species in slurries (Chapter 4).

In this chapter, Raman will be simulated to measure insoluble kyanite, wollastonite, and

silica. Standard deviations for measurement accuracies are shown in the “In-line” column

in Table 6.2. It is assumed that there are no phase changes for any of the species, although

the dual Kalman filter framework would allow for phase changes to be estimated as a

process parameter as well (which could provide useful process information in the absence

of an accurate solubility model).

Since an on-site analytical laboratory could have any capabilities of in-line probes at

their disposal, the in-line measurement standard deviation is used for the laboratory when-

ever the in-line sensor is reported as more accurate than the corresponding offline sensor.

The analytical laboratory measurement standard deviation is shown in the “Laboratory”

column in Table 6.2. Planned in-line measurements at the Hanford high-level waste (HLW)
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Table 6.1: Simulation vessel compositions in kg.

Species Tank 1 Tank 2 Tank 3 Soluble
Sodium Nitrate 5742.2 5742.2 5742.2 Yes
Sodium Nitrite 2505.0 2505.0 2505.0 Yes
Sodium Carbonate 1603.3 1603.3 1603.3 Yes
Sodium Sulfate 207.7 207.7 207.7 Yes
Boric Acid 0.0 3764.3 3764.3 Yes
Kyanite 0.0 7424.1 7424.1 No
Wollastonite 0.0 7842.3 7842.3 No
Silica 0.0 7790.1 7790.1 No

Table 6.2: Standard deviations of prediction for in-line optical sensors, offline measure-
ments performed via ICP-AES or IC, and the lower of online/offline that an analytical
laboratory at Hanford is likely to utilize.

Species (kg) In-line Offline Laboratory
Sodium Nitrate 30.9 191.4 30.9
Sodium Nitrite 18.0 83.5 18.0
Sodium Carbonate 60.8 53.4 53.4
Sodium Sulfate 23.5 6.9 6.9
Boric Acid 34.7 125.5 34.7
Kyanite 170.8 247.5 170.8
Wollastonite 221.7 261.4 221.7
Silica 489.4 259.7 259.7

Waste Treatment Plant (WTP) that are not the focus of this chapter include laser liquid-

height measurements and GFC mass measurements [39].

6.2.4 Fault Scenario

A fault scenario is investigated in this chapter that may occur in series batch reactors

with heel masses. For all insoluble species, the heel mass parameter begins at 0.20 at Batch

1. Let I denote the subset of species that are insoluble, shown in Table 6.1.

αi
k,1 = 0.20

for i ∈ I

for k = 1, 2, ..., v

(6.9)

The first fault scenario is a gradual 2% per batch increase in the heel mass fraction in
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Figure 6.3: Measurement scenarios in this chapter are a laboratory sample of Tank 1 and
gravimetric measurements of the control input (glass-forming chemicals (GFCs)), in ad-
dition to: a) in-line sensors at Tanks 2 and 3, b) no additional measurements, and c) an
additional laboratory sample in Tank 3.

Tank 2 starting with the seventh batch. This may be caused by solid buildup restricting fluid

flow, change in the settling properties of a specific component, a change in macroscopic

slurry properties, mixing degradation, or pumping degradation. The “drift” fault rule is

shown in Equation 6.10.

αi
2,t = (1.02)αi

2,t−1

for i ∈ I

for t = 7, 8, ..., T

(6.10)

The second fault scenario is an abrupt change in heel mass fraction in Tank 2 that occurs

during Batch 7. This may be caused by a mixing or pumping failure, different settling

properties of a particular solid, agglomeration of suspended particles, or a substantially

different nuclear-waste composition. The fault rule is shown in Equation 6.11.
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αi
2,7 = (1.5)αi

2,6

for i ∈ I
(6.11)

There is also an additive white noise influencing the parameter values in addition to the

fault rules. A dimensionless Gaussian noise with a standard deviation of 5×10−3 is applied

to the parameter values at each batch, shown in Equation 6.12.

αi
k,t = αi

k,t−1 +N (0,Σθ)

for i ∈ I

for k = 1, 2, ..., v

for t = 1, 2, ..., T

(6.12)

6.2.5 Sensor Models

Two analytical techniques are expected to be used at the on-site analytical laboratory

at Hanford. ICP-AES can measure elemental species and is planned to be used to measure

boron (boric acid), silicon (silica), aluminum (kyanite), and calcium (wollastonite). IC

can measure soluble molecular species and will be used to measure the nitrate, nitrite,

carbonate, and sulfate anions. For both of these instruments, measurement accuracy is

expected to be within a relative percent difference of less than 20% (±20% of the true

value). To convert ±20% into the form of covariance expected by the dual-Kalman filter, it

is assumed that ±20% corresponds to ±3 standard deviations.

Optical in-line sensors are used as a complementary technique to laboratory measure-

ments in this work. Raman spectroscopy and ATR-FTIR spectroscopy have representative

accuracies taken from results measuring slurries in the work by Prasad et al. [19]. Ra-

man spectroscopy is used to interrogate insoluble solids and ATR-FTIR is used to measure

soluble anions. By charge balance, the measurement of anions is assumed to have a match-

ing sodium cations that are included in the total mass, although ionic sodium could not be
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measured directly by Raman or ATR-FTIR spectroscopies.

Three sensor models are investigated in this chapter and are qualitatively shown in

Figure 6.3. All sensor models begin with an analytical laboratory measurement in Tank

1, since this is the current plan for processing nuclear waste at Hanford. The first sensor

model additionally has in-line sensors at Tanks 2 and 3, which can measure concentrations

and detect deviations from a mass-balance model. The second sensor model does not have

any additional measurements beyond the laboratory sample at Tank 1. The second sensor

model corresponds to a feed-forward process model, where control is based on the mass

balance model. The third sensor model corresponds to an additional laboratory sample

taken from Tank 3.

6.3 The Dual Kalman Filter

The Kalman filter is a recursive estimator in which a previous state estimate is propa-

gated through a system model and subsequently updated with the most recent sensor mea-

surements. The dual Kalman filter allows both states and parameters to be estimated using

two separate filters, a state filter and a parameter filter. The conversion to state-space form

from the model built in Equation 6.8 is shown in Chapter G.

The mass balance equations (Equation 6.8) of the system can be collected (concate-

nated) into discrete-time state-space form. Instead of m, α, and g used in Equation 6.1 and

Equation 6.8, the following equations use x, θ, and u, respectively. In state-space form,

the state and measurement equations are:

xt+1 = F(t,θ)xt +B(t,θ)ut +wd (6.13)

yt+1 = H(t,θ)xt +wz (6.14)

where the state of the three-tank system at Batch t, xt ∈ Rn×1, is a vector of chemical

masses within each tank, where n = v × s. Similarly, the parameter vector at Batch t,

132



Chapter 6. Model-Based Fault Detection Steven H. Crouse

θt ∈ Rp×1, describes the heel mass fractions for each species, where p is the number

of process parameters. In this chapter, there is one parameter for each state, so p = n.

The control vector at Batch t, ut ∈ Rc×1, describes additions to the tanks, where c is the

dimension of the control input. The measurement vector at Batch t, yt ∈ Rq×1, describes

in-line or laboratory measurements, where q is the dimension of measurements collected.

6.3.1 Stochastic Matrices

The covariance matrices of this chapter corresponding to process noise (Σx), parameter

noise (Σθ), and measurement noise (Σz), are assumed to be known prior to dual Kalman

filter implementation. The covariance matrices also dictate the distribution of additive noise

used in simulations in this chapter. Methods exist for initializing these matrices when

unknown a priori [138].

The vector of process noise, wd ∼ N (0,Σx) ∈ Rn×1, is assumed to be zero-mean

with covariance given by Σx ∈ Rn×n, which is a diagonal covariance matrix2, Σx =

Diag((0.02)x̄)◦
1
2 (standard deviation of 2% of the average or nominal state vector, x̄). This

choice of process noise is somewhat arbitrary; knowledge of the Hanford mass balance (and

deviations from such a mass balance) would be required to inform the vector of process

noise. However, we are operating under the assumption that deviations from the mass bal-

ance would be minimal (2%). More process noise would cause the Kalman filter estimates

to rely on measurement more than model prediction due to the higher model uncertainty.

The vector of measurement noise, wz ∼ N (0,Σz) ∈ Rq×1 is assumed to be zero-mean3

and a non-diagonal covariance matrix, Σz ∈ Rq×q, estimated from sensor data shown in

Table 6.2 and taken from the data shown in Chapter 4 [19]. For measurements using the

analytical laboratory, covariances are assumed to be zero (only variance is considered since

covariance is not reported). Parameter drift is shown by Equation 6.15 and characterized

2A Hadamard power (elementwise power) of 1
2 is indicated by ◦ 1

2 .
3Sensor biases could result due to unmodeled instrument drift or poor measurement models; Chapter 2,

Chapter 3, Chapter 4, and Chapter 5 address these issues for solutions and slurries.
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by wθ:

θt = θt−1 +wθ (6.15)

where the vector of parameter noise, wθ ∼ N (0,Σθ) ∈ Rp×1, is assumed to be zero-

mean with a covariance given by Σθ ∈ Rp×p. In this chapter, parameter drift is assumed

to obey Σθ = Diag((0.025)θ̄)◦
1
2 (standard deviation of 2.5% of the average or nominal

parameter value, θ̄). Parameter drift would be dependent on the regularity of heel masses

at the Hanford process; an estimate of 2.5% is used because it is substantially less than the

condition of a fault (50% change).

6.3.2 Dual Kalman Filter

The dual Kalman filter was implemented in the method shown by Wan and Nelson

[138, 135]. The four steps are parameter prediction, state prediction, state update, and

parameter update. In Equation 6.16–6.26, ˆ denotes an estimated quantity and − denotes a

model-predicted quantity (before measurement update).

Parameter prediction:

θ̂
−
t = θ̂t−1 (6.16)

Φ−
θ (t) = Φ(t− 1) +Σθ (6.17)

State prediction:

x̂−
t = F(t, θ̂

−
t )x̂t−1 +B(t, θ̂

−
t )ut (6.18)

Φ−
x (t) = F(t, θ̂

−
t )Φx(t− 1)FT(t, θ̂

−
t ) +Σx (6.19)
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State update:

Kx(t) = Φ−
x (t)H

T
x [Σz +HxΦ

−
x (t)H

T
x ]

−1 (6.20)

x̂t = x̂−
t +Kx(t)[yt −Hxx̂

−
t ] (6.21)

Φx(t) = [I−Kx(t)Hx]Φ
−
x (t) (6.22)

(6.23)

Parameter update:

Kθ(t) = Φ−
θ (t)H

T
θ (t, x̂t)[Σz +Hθ(t, x̂t)Φ

−
θ (t)H

T
θ (t, x̂t)]

−1 (6.24)

θ̂t = θ̂
−
t +Kθ(t)[yt −Hθ(t, x̂t)θ̂

−
t ] (6.25)

Φθ(t) = [I−Kθ(t)Hθ(t, x̂t)]Φ
−
θ (t) (6.26)

where Φθ(t) ∈ Rp×p and Φx(t) ∈ Rn×n are estimation error covariance matrices for param-

eters and states, respectively. The estimation covariance matrices are initialized in this work

as Σθ and Σx, and are updated with each iteration of the dual Kalman filter. Kθ(t) ∈ Rp×q

and Kx(t) ∈ Rn×q are the Kalman gains calculated for the parameters and states, respec-

tively.

The linear parameter and state update equations are Fθ ∈ Rp×p and F ∈ Rn×n, re-

spectively. In this chapter, the parameter update is equivalent to the identity matrix since

mixing parameters do not nominally change from batch to batch, Fθ = Ip×p. The state

transition matrix for three batch reactors can be found by putting the general mass balance

from Equation 6.8 into matrix format; this matrix represents the mass being transferred to
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the subsequent tank (except for heel masses):

F(θ, t) =


Diag(αall

1,t) 0 0

I−Diag(αall
1,t) Diag(αall

2,t) 0

0 I−Diag(αall
2,t) Diag(αall

3,t)


(6.27)

Important to this chapter, the linear parameter and state measurement equations are Hθ ∈

Rq×p and H ∈ Rq×n, respectively. H determines which states are measurable in different

tanks; all of these matrices are diagonal since measurements of tank k only provide state

information of tank k. Meanwhile, Hθ determines which parameters (heel masses) are

measurable in different tanks; this requires measurements of adjacent tanks (i.e. k and

k− 1). Hθ and H are therefore different for the three measurement scenarios and are listed

for each. H is shown in Equation 6.28–6.30 and Hθ is shown in Equation 6.31–6.33 and

calculated using expressions from Wan et al. [138].

HScenario 1 =


Is×s 0 0

0 Is×s 0

0 0 Is×s

 (6.28)

HScenario 2 =


Is×s 0 0

0 0 0

0 0 0

 (6.29)

HScenario 3 =


Is×s 0 0

0 0 0

0 0 Is×s

 (6.30)
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HScenario 1
θ (t, x̂t) =


Diag(m̂all

1,t) 0 0

−Diag(m̂all
1,t) Diag(m̂all

2,t) 0

0 −Diag(m̂all
2,t) Diag(m̂all

3,t)


(6.31)

HScenario 2
θ (t, x̂t) =


Diag(m̂all

1,t) 0 0

0 0 0

0 0 0

 (6.32)

HScenario 3
θ (t, x̂t) =


Diag(m̂all

1,t) 0 0

0 0 0

0 −Diag(m̂all
2,t) Diag(m̂all

3,t)


(6.33)

6.4 Results

The simulation study was performed with all of the species included in Table 6.1 for

the nuclear waste system at Hanford. However, the plotted results focus on a single species

for clarity: kyanite. Kyanite is an insoluble GFC that is added in as a control input to the

waste batch and can be reliably measured by in-line and offline measurement techniques.

6.4.1 Observability

The observability matrix (O) of states and parameters are calculated for the system in

Equation 6.34 and Equation 6.35, respectively. The rank of state and parameter observabil-

ity matrices for the three measurement scenarios are shown in Table 6.3. The one laboratory

sample measurement and two laboratory sample measurement scenarios have full observ-
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Table 6.3: Observability of all system states and parameters of the three-tank system.

Measurement Scenario O(States) O(Parameters)
In-line Sensors Yes Yes
One Laboratory Sample Yes No
Two Laboratory Samples Yes No

ability rank for state measurements, indicating that the concentration of all species can be

measured in each tank, given an accurate state model. However, the two measurement sce-

narios do not have full observability rank for parameters, indicating that they cannot take

advantage of adaptive models with varying heel masses (such as the dual-Kalman filter in

this study) nor detect model faults, such as heel mass changes. The in-line sensor model

has full observability matrix rank for both states and parameters; the parameters, in addi-

tion to the states, can be used to build an adaptive model and detect faults that occur with

tank heel masses.

O(F,H) =



H

HF

...

HFn−1


(6.34)

O(Fθ,Hθ) =



Hθ

HθFθ

...

HθF
n−1
θ


(6.35)

6.4.2 Gradual Parameter Drift

In this section, a gradual parameter drift was simulated in Tank 2 by increasing αi
2,t

by 2% for every batch starting with the seventh batch for all insoluble species, i ∈ I
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(Equation 6.10).

In Figure 6.4a, the true heel fractions began increasing above the mean value of 0.20

soon after the drifting fault occurred at batch seven. The in-line sensors more closely

approximated the true heel as it drifted from its nominal steady state value compared to

other monitoring schemes. Meanwhile, one laboratory sample combined with a mass-

balance model was unable to adapt to changing downstream processing conditions. The

poor performance of the two laboratory samples sensor model can be attributed to to the

lack of feedback in the specific tank where the drift fault occurred, Tank 2. While Tank

2 had significantly different compositions with the drift fault (see Figure 6.5a), the input-

output behavior of Tank 2 remained nearly constant and so the fault was unable to be

detected without measurements directly of Tank 2. Figure 6.4b highlights how the different

sensor models adjusted to white parameter noise in Tank 3 while Tank 2 underwent the drift

fault.

In Figure 6.5, the error of estimated states (masses) of kyanite are shown for Tanks

2 and 3. In Tank 2 (Figure 6.5a), the in-line sensors were able to maintain a near-zero-

mean error in the presence of changing process parameters. Meanwhile, the one laboratory

sample and two laboratory samples sensor models underpredicted the true kyanite mass in

the tanks as the observer model (Equation 6.26, a function of θ̂t) did not accurately adjust

to the changing parameters, θt.

Figure 6.6 additionally shows predictions of Tanks 2 and 3 of sodium nitrate, a soluble

species that is assumed to have zero retention in this study. Compared to the feed-forward

sensor model of one laboratory sample, in-line sensors decreased the model prediction

error in Tanks 2 and 3, and two laboratory samples decreased the model prediction error in

Tank 3. Even with no component heel (as is the case for sodium nitrate in Figure 6.6) the

additional measurements of in-line sensors and two laboratory samples reduced the impact

of process noise when an identical mass-balance model was used in all three sensor model

structures.
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b)a)

Figure 6.4: True and measured heel fraction of kyanite in a) Tank 2 and b) Tank 3 during a
heel drift fault in Tank 2.

a) b)

Figure 6.5: Deviation of measured states from true states of kyanite mass in a) Tank 2 and
b) Tank 3 during a heel drift fault in Tank 2.

a) b)

Figure 6.6: Deviation of measured states from true states of sodium nitrate mass in a) Tank
2 and b) Tank 3 during a heel drift fault in Tank 2.

6.4.3 Sudden Parameter Shift Fault

A sudden parameter shift was simulated in Tank 2 by increasing αi
2,t by 50% at Batch

7 for all insoluble species, i ∈ I (Equation 6.11).
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In Figure 6.7a the in-line sensor model was able to adjust estimated parameter values,

θ̂t, to follow the true heel fraction, θt. This observed parameter shift could be used to

detect a fault when it occurs. The other sensor models utilizing only laboratory samples

and having no direct measurement of Tank 2 did not appreciably deviate from steady state

estimates for θ̂t. Figure 6.7b shows the heel fraction prediction for Tank 3, the tank after the

fault occurs. With no fault occurring, all of the measurement scenarios are able to predict

the heel fraction accurately.

To show how heel mass changes may affect the amount of kyanite in the tanks, Fig-

ure 6.8a and Figure 6.8b show the errors of the estimated states (masses) for Tanks 2 and

3, respectively. An error of zero represents perfect measurement. In Figure 6.8a, the in-

line sensor model adapts to the sudden shift in parameter values, and maintains a near

zero-mean prediction error of the true tank state. An inaccuarate estimation of kyanite in

Tank 2 (Figure 6.8a) may lead to increased mixer wear, deadzones, and the downstream

slurry composition may be affected. The kyanite results of Figure 6.7–6.9 are tabulated in

Table 6.4.

a) b)

Figure 6.7: True and measured heel fraction of kyanite in a) Tank 2 and b) Tank 3 during a
sudden heel shift fault in Tank 2.

6.4.4 Species with No Heel

These results can approximate the mixing behavior of undetectable species as well

assuming their mixing parameters, θt, are similar to measurable species due to physical

similarities (i.e. equivalent particle size distribution, material density, etc.) For example,
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a) b)

Figure 6.8: Deviation of measured states from true states of kyanite mass in a) Tank 2 and
b) Tank 3 during a sudden heel shift fault in Tank 2.

a) b)

Figure 6.9: Deviation of measured states from true states of sodium nitrate mass in a) Tank
2 and b) Tank 3 during a sudden heel shift fault in Tank 2.

kyanite may be measurable with in-line sensors, but another solid species, such as gibbsite

(Al(OH)3), may not be measurable with in-line sensors. In such a scenario, if the two

chemical constituents are determined to have similar solid-settling properties, the settling

behavior of kyanite may suggest gibbsite settling.
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Table 6.4: MAE and root mean squared error (RMSE) for estimated parameters (θ̂t) and
states (x̂t) of kyanite in Tank 2 when heel mass is suddenly increased by 50%.

Parameters (θ̂t, unitless)
Kyanite MAE RMSE

In-line Sensors 0.022 0.028
One Laboratory Sample 0.097 0.097
Two Laboratory Samples 0.097 0.097

States (x̂t, kg)
Kyanite MAE RMSE

In-line Sensors 183.3 235.0
One Laboratory Sample 969.9 980.7
Two Laboratory Samples 974.3 985.7

6.5 Conclusion

This chapter highlights the importance of accurate and timely process measurements

in a simulated nuclear-waste processing plant. Of the three studied sensor models, mea-

surements in every tank enabled by real-time sensors provided the best real-time parameter

estimation for the studied fault scenarios where heels changed the mass balance between

tanks. For a sudden increase in heel mass, sensors in every tank (enabled by real-time sen-

sors) had an MAE of 0.025, compared to 0.097 of a feed-forward “one laboratory sample”

sensor model and and 0.097 of a “two laboratory samples” model. An observability anal-

ysis provided a rigorous underpinning of this result. Beyond parameter estimation, state

estimation was also improved by measuring each individual tank. Including timely and

accurate sample points in a chemical process, particularly of slurry processes with heel

masses, may allow early detection of faults that may not be detected via standard process

sampling and mass-balance prediction.
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CHAPTER 7

DATA-DRIVEN FAULT DETECTION IN INDUSTRIAL SLURRIES

This chapter investigates fault detection, but from a data-driven paradigm rather than

model-based as Chapter 6 had done. This chapter contributes to this thesis by investi-

gating data-driven fault detection in industrial slurry processes with multiple instruments:

Raman spectroscopy, attenuated total reflectance - Fourier transform infrared (ATR-FTIR)

spectroscopy, and focused beam reflectance measurement (FBRM). This chapter then in-

vestigates these methods to detect sensor faults, mixing faults, and unanticipated chemistry

in slurry systems typical of high-level waste (HLW).

Data from the three instruments were combined via a data fusion scheme utilizing prin-

cipal component analysis (PCA), Hotelling T2, and squared prediction error (SPE). Uncer-

tainty was quantified yielding a three-sigma region of normal operation to identify faults.

The three instruments allowed for the detection of a variety of process faults that may ap-

pear in either phase (solution or insoluble phase) of a slurry. This chapter represents a major

step forward in 1) monitoring radioactive slurry processes by reducing the need for offline

monitoring, 2) accurately detecting faults in the presence of probe fouling, and 3) enabling

the use of commercially available spectroscopic sensors to detect a variety of faulty process

states in real-time and remotely.

7.1 Introduction

Slurries are ubiquitous in process industries appearing in industrial mineral mining

[139], industrial wastewaters [140, 141], municipal wastewaters [142], pharmacuetical

crystallization [143], additive manufacturing [144], battery manufacturing [145], and nuclear-

waste processing [146, 147, 148] among other industries. Despite their industrial relevance,

slurries are often difficult to monitor in real-time because they comprise multiple phases.
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Furthermore, many slurry processes are multicomponent and have poorly controlled par-

ticle size distributions. For industrial processes, there are many incentives to distinguish

whether a process is operating normally or if a process fault has occurred. Abnormal pro-

cess conditions can reduce economic productivity by producing a substandard product or

by decreasing process efficiency, or threatening the safety of workers and surrounding com-

munities.

As stated in Section 1.2, the use of real-time sensors (process analytical technology

(PAT)) may have great benefit to waste processing of slurries (HLW) at Hanford. Despite

the established literature on real-time sensors (see Section 1.1), little has been published on

statistical fault detection using spectroscpic sensors in nuclear-waste systems.

This chapter will rely on multivariate statistical process monitoring (MSPM), which is

often used for fault detection, diagnosis, and reconstruction. MSPM has historically been

applied to industrial chemical processes [149], including nuclear-waste treatment. At the

Savannah River Site, which has been processing HLW since 1996, measurements of waste

composition have used statistical analysis including Hotelling T2 to determine waste batch

acceptability [150, 151]. At the Hanford site, MSPM methods have been used to monitor

the radiological characteristics (alpha/beta/gamma emissions) of spent nuclear fuel [152].

However, real-time spectroscopic instruments have not been used for MSPM in nuclear-

waste processing.

Outside of the nuclear field, MSPM is established with methods capable of inferring

a faulty process state using measurement [153, 154]. Foundational methods that are com-

monly found in MSPM include multivariate cumulative sum, Hotelling T2, and SPE. There

have been enhancements to these traditional MSPM methods [155, 156, 157], but the base

methods of Hotelling T2 and SPE still have utility for fault detection in many systems

including those monitored with spectroscopic sensors. Hotelling T2 and SPE have been

combined with spectroscopic sensors in pharmaceutical crystallization [158], coffee clas-

sification [159], polymer production [160], and pulsed-spray fluid-bed granulation [161].
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Similar work using statistical process control with spectroscopic sensors (though not specif-

ically Hotelling T2 and SPE) has been used in pharmaceutical manufacturing [162], semi-

conductor manufacturing [163], and polymorphic transitions [164]. However, MSPM with

spectroscopic sensors has not been demonstrated 1) in nuclear-waste processing and 2) in

slurry systems with a variety of practical faults including sensor faults, mixing faults, and

unanticipated chemistry.

In this chapter, the basic concepts behind feature-level data fusion and MSPM are re-

viewed, a fouling fault is classified as “expected” and its effect removed computationally,

and experimental results are presented showing that the presently studied three instruments

are robust in detecting a variety of sensor, mixing, and unanticipated chemistry faults in

slurry systems. This chapter represents a major step forward in monitoring hazardous slurry

processes by eliminating the need for offline monitoring and enabling the use of commer-

cially available spectroscopic sensors to detect a variety of faulty process states remotely

and in real-time.

7.2 Materials and Methods

The present study consists of three parts. First, a fouling fault on the surface of the

ATR-FTIR probe appears in both normal slurries and slurries with other process faults; this

fouling is removed using a technique established in Chapter 3: nonnegatively constrained

classical least squares (NCCLS). Next, the Raman spectrometer, ATR-FTIR spectrometer,

and FBRM instrument have their information concatenated and scaled. The dimensionality

is reduced using PCA and the normal/faulty state is quantified using a three-sigma region in

MSPM space (Hotelling T2 and SPE). The effect of computationally removing the gibbsite

fouling is investigated as it pertains to accurately classifying normal and faulty data. Lastly,

the combination of the three sensors is compared to the ability of each individual instrument

to distinguish faulty from normal slurries. Fault detection performance is measured in this

study using accuracy, precision, recall, and F1-score.

146



Chapter 7. Data-Driven Fault Detection in Industrial Slurries Steven H. Crouse

7.2.1 Dataset Construction

Measurements were collected in a Mettler Toledo OptiMax vessel at 25◦C and stirred at

400 RPM. In-situ Raman spectroscopy measurements were collected with a Mettler Toledo

ReactRaman 785 using a 785 nm laser and 300 mW laser power at 1 s exposure time

and 10 averaged scans. In-situ ATR-FTIR measurements were collected using a Mettler

Toledo ReactIR 10 with one-minute sample collection time corresponding to 256 averaged

scans. In-situ FBRM measurements were collected every minute with a Mettler Toledo

ParticleTrack G-400 that had a laser speed of 2 m
s . All experimental conditions are listed

in Table H.1, Table H.2, and Table H.3.

Gibbsite was the only chemical species that had significant partitioning into both sol-

uble and insoluble phases; approximately 0.25 m dissolves at 25◦C and high pH [165].

The starting solution was generated with water (solvent), sodium hydroxide (3.00 m), and

gibbsite slightly below its equilibrium concentration (0.192 m); the starting solution was

held at 37◦C to increase the rate of dissolution. The gibbsite began as a white powder, and

experiments only began after the starting solution became clear.

Three datasets (training, validation, and testing) were designed in Python and then con-

structed experimentally by adding pure components to create mixtures. Training data were

representative of typical chemometric calibration and followed a Latin hypercube design-

of-experiments; training data were used to determine directions of variation in the data

(principal components). The validation data and test data were both constructed to be rep-

resentative of a three-tank batch slurry system in series with masses (heels) of material

computationally left behind to mix with subsequent batches. Validation data were anal-

ogous to historical process data that have been collected and are known to be fault-free;

validation data were used to determine normal process statistics and develop a three-sigma

uncertainty region for normal data. The test data were new data with an unknown state. A

visual representation of the three datasets can be found in Figure 7.1.
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Figure 7.1: a) The distinction between training, validation, and testing datasets used in this
chapter. b) The mass balance simulated in Python to inform experimental measurements.

Training Data

Training data were collected in two separate batches corresponding to the two differ-

ent phases of the slurry: solution and suspended solids. Separating training data into two

phases mimics a realistic scenario where limited resources or process knowledge may pro-

hibit a comprehensive training dataset [21]. Principal components were found using the

solution phase data (15 experiments) for ATR-FTIR, the insoluble phase data (16 experi-

ments) for FBRM, and both datasets for the ball-probe Raman spectrometer that interro-

gated both phases. All training data were constructed using the bounds shown in Table 7.1

with the inclusion of glass-forming chemicals (GFCs). Scanning electron microscopy im-

ages of the amorphous solid particles at 1000x magnification indicated that particles were

approximately 5 µm in diameter as shown in Figure 7.2. Notably, the particles are non-

spherical and span a large range of characteristic particle lengths. Iron oxide (Fe2O3) ap-

pears as a fine powder at 1000× magnification.
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a) b)

c) d)

Figure 7.2: Images of the solid particles used in this study collected with a Hitachi SU8320
SEM at 1000× magnification: a) gibbsite, b) iron oxide, c) kyanite, and d) silica.

7.2.2 Process Data

Physical slurries were constructed and measured that matched results from a three-tank

mass balance model constructed in Python as shown in Figure 7.1b. Waste was constructed

from a uniform distribution and then GFCs from a separate uniform distribution are added

in Tank 2; Tank 1 did not contain GFCs. One batch was followed from feed through the

three-tank process. Unless explicitly tested as a fault, the simulation assumed that 80% of

the mass was transferred during transfer to the next tank in series, while 20% of the mass

remained behind as a heel mass [39, 32]. Bounds from Table 7.1 were used to construct

an initial condition for each of the three tanks. The Tank 1 composition was randomly

generated within bounds (Table 7.1), constructed, and measured as “Tank 1.” Then, Tank 2

had its composition determined by taking 80% of the mass of Tank 1 and combining it with
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Table 7.1: Bounds (in grams) used to construct both training and testing data.

Component Formula Minimum (g) Maximum (g) Soluble
water H2O 100.00 100.00 –
sodium hydroxide NaOH 12.00 12.00 yes
sodium nitrate NaNO3 6.37 17.00 yes
sodium nitrite NaNO2 3.93 8.07 yes
sodium sulfate Na2SO4 0.00 2.13 yes
iron oxide Fe2O3 3.30 23.72 no
kyanite Al2SiO5 1.28 8.41 no
silica SiO2 0.31 1.97 no
gibbsite Al(OH)3 3.29 23.65 partially
GFCs
boric acid H3BO3 5.00 13.42 yes
kyanite Al2SiO5 5.00 15.00 no
silica SiO2 2.00 10.00 no

20% of the mass of the initial condition for Tank 2 and adding randomly generated GFCs

(from Table 7.1). The result was physically constructed and measured as “Tank 2.” The

composition of Tank 3 was determined by taking 80% of the mass of Tank 2 and combining

it with 20% of the mass of the initial condition for Tank 3. The result was constructed

experimentally and measured as “Tank 3.” This three-tank process was designed with 12

different initial conditions, leading to 36 total measurements. Of these 36 experiments,

19 were constructed with process faults (as detailed in the following section), leaving 17

experiments without process faults. All 19 faulty data were included in the test data. Three

of the 17 normal experiments were set aside for test data (though not labeled as faulty)

because of abnormal characteristics noticed during analysis (Experiments 21, 24, and 25

from Table H.3; discussed in Section 7.4.2). The remaining 14 normal experiments were

randomly split to give a total of nine validation experiments and eight testing experiments.

7.2.3 Faults

Faults that may occur in slurry processing may cause significant deviation in in-line

sensor readings, while others may be in the range of compositions listed in Table 7.1 while

also producing no significant deviations in measured signal. The faults are listed below
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with experiment numbers that correspond to data in Table H.3.

• Shifted pH (Experiment 8): May change the speciation of soluble species in solution.

A single experiment was conducted where a pH shift from 13 to below the pKa

of boric acid (approximately 9 at 25◦C [166]) was observed. Lower pH causes a

measureable shift in the ATR-FTIR spectrum for the borate anion [167].

• Unanticipated Species: May appear in a multicomponent system where the process

feed stream is poorly characterized or if subsequent reactions occur during process-

ing.

– Three experiments were conducted that had 5.00 g, 4.00 g, and 3.20 g of soluble

sodium carbonate (Na2CO3) added to otherwise typical slurries (Experiments

30 – 32).

– Three additional experiments were conducted that had 5.00 g, 4.00 g, and 3.20

g of insoluble [19] zircon (ZrSiO4) added to otherwise normal slurries (Experi-

ments 33 – 35).

• Sensor Faults: The sensors monitoring the slurries can fail, producing abnormal read-

ings.

– Probe Fouling (All experiments to varying extent): May impact the signal ob-

served by sensors in slurries. This behavior was observed on the ATR-FTIR

probe in nearly all slurry measurements of this study and is investigated further

in Section 7.3.1.

– Sensor Failure: Spectroscopic sensors, like any sensor, may fail and produce ab-

normal measurements. This could be due to age, radiation exposure, incorrect

sensor placement, or other factors. In this chapter, three sensor fault measure-

ments were created by leaving individual sensors — Raman (Experiment 12),

ATR-FTIR (Experiment 14), or FBRM (Experiment 10) — in the headspace of
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the OptiMax vessel. Additionally, one additional sensor fault experiment was

constructed by failing to shroud the Raman vessel during data collection (Ex-

periment 11), which can increase sensor noise from sources such as cosmic rays

[90, 20, 167].

• Stirrer Failure (Experiment 9): May be caused by mechanical failure or significant

change in slurry flow properties. One experiment was conducted where the Optimax

stirrer was stopped (400 rpm → 0 rpm) for five minutes and then measurements were

collected.

• Change in Heel Composition (Experiments 16, 17, 19, and 20): May be caused by

change in slurry rheology or unanticipated crystallization. Four experiments had their

heel amount adjusted in the Python simulation from 80% to a value in the range 59%

– 92%. The compositions of these experiments were still within the bounds defined

by Table 7.1.

• Incorrect glass-forming chemical (GFC) Addition (Experiments 28 and 29): May

appear as decreased GFC composition. Two experiments had no kyanite added as

a GFC, though kyanite still appears in the waste feed. This resulted in slurries with

less kyanite than expected after GFC addition, but that were still within the range

expected in the tanks (Table 7.1).

• Unanticipated Recycle Behavior (Experiment 27): May appear as GFCs appearing in

the feed stream. There was one experiment where 2.52 g of boric acid, which is only

appearing as a GFC in this study, appeared prior to GFC addition (Tank 1). However,

this experiment was within the bounds defined by Table 7.1.

7.2.4 Data Processing

High-dimensional data from Raman spectroscopy, ATR-FTIR spectroscopy, and FBRM

were measured in the experiments performed. Raman spectroscopy measures the Raman
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effect, where a photon (roughly 1 in 1010 incident photons) changes frequency depending

on vibrational transitions of a molecule [90]; the Raman effect competes with fluorescence

which can contribute significantly to the spectra of some materials, particularly slurries

or powders. To reduce the effect of fluorescence when measuring slurries with our Ra-

man spectrometer, signal smoothing and baseline subtraction were performed. The data

were smoothed with a second-order Savitzky-Golay filter with a window size of 19 cm−1.

Baseline subtraction was achieved by taking the first derivative of the data with respect

to wavenumber. Data were reported by our Raman spectrometer in the range 100 – 3200

cm−1 (dimensionality of 3101) and were reduced to the region where significant peaks were

observed in the Raman training data: 200 – 1600 cm−1 (dimensionality of 1401).

ATR-FTIR data were reported in the range 649 – 2998 cm−1 (dimensionality of 631).

For the ATR-FTIR instrument, feature selection was used to isolate the spectral region

where known anions in the waste absorb in the Fourier transform infrared (FTIR) spec-

trum: 850 – 1450 cm−1 (dimensionality of 162). Then, computational removal of fouling

on the probe tip was accomplished by applying NCCLS locally to the region of gibbsite

appearance (847 – 1096 cm−1) as shown in Section 7.3.1 [31]. Lastly, the ATR-FTIR spec-

tra were processed with a second-order Savitzky-Golay filter with a window size of seven

before having the first derivative taken with respect to wavenumber to eliminate potentially

shifting spectral baselines.

FBRM data were constructed of bins where chord-length counts of solid particles were

recorded. When measuring slurries of this study with particle diameters typically compris-

ing 5 µm or less, the FBRM sensor recorded few measurements of large (greater than 100

µm) chord lengths. During data analysis, this effect became significant when scaling data;

standard normal variate (SNV) scaling (as used in this chapter) introduced erroneous outlier

data (greater than six standard deviations) in the sparsely populated features representing

large chord lengths when a large measurement was recorded. This type of behavior may

have been erroneously labeled a fault, when it was in fact a normal slurry measurement.
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In practice, these large chord length features may provide valuable information about ac-

tual agglomeration or particle size changes. In the authors’ opinions, three options may

address these sparse measurements at some features: feature selection, data smoothing, or

constructing a larger dataset. Feature selection was used in this chapter. The chord-length

range 1 – 1000 µm (100 logarithmically-spaced features) was reduced to 1 – 89 µm (65

features).

The data from the three instruments at a single condition were concatenated and scaled

according to SNV scaling. Following the matrix convention of the chemometric literature,

the first dimension (row) contains experiments and the second dimension (column) con-

tains the features. Concatenation was achieved by taking a sensor vector from Raman as

xRaman ∈ R1×1401, a sensor vector from ATR-FTIR as xATR−FTIR ∈ R1×162, and a sensor

vector from FBRM as xFBRM ∈ R1×65 [168]:

xunscaled = [xRaman ⌢ xATR−FTIR ⌢ xFBRM ] ∈ R1×m (7.1)

where ⌢ indicates concatenation and m = 1628 in this chapter but is left as m for general-

ity. The data can then be SNV-scaled by subtracting the mean feature vector and variance

matrix (both from the training data) as shown in Chapter A to give the concatenated and

scaled input vector, x ∈ R1×m, for the fault detection algorithms used in this chapter.

7.2.5 Fault Detection Metrics

Hotelling T2 and SPE have been studied extensively for analyzing chemical processes

and are closely related to PCA [169, 170]. PCA decomposes a matrix into principal com-

ponents and loading vectors by finding the vector that maximizes the projected variance

in the data [92, 171, 93, 172]. PCA first requires the data to be mean-centered and often

is applied after setting feature variance to unity by dividing by feature-specific variance

(SNV scaling). All data in this section are assumed to have already undergone SNV scal-

ing. Then, the covariance matrix, C ∈ Rm×m, can be computed from the training data
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Xtrain ∈ Rn×m where n are the number of samples and m are the number of features:

C =
1

n− 1
XT

trainXtrain (7.2)

The principal components are the eigenvectors of the covariance matrix, C (i.e. columns

of eigenvector matrix V ∈ Rm×m) [59, 60]. The variance in the principal component

direction is given by the eigenvalues of the covariance matrix, C (i.e. elements of diagonal

matrix Λ ∈ Rm×m). The eigen equation is

CV = VΛ or C = VΛVT (7.3)

To use PCA for fault detection, a new measurement vector, x, can be projected from the

original space of the data O into principal-component subspace S by right-multiplication

with a truncated eigenvector (principal component) matrix (Vr ∈ Rm×l) where the first l

components are used to yield a projection xs ∈ R1×l (i.e. the score vector).

xs = xVr (7.4)

Hotelling T2 quantifies the deviation of new data in the directions of the principal com-

ponents. Hotelling T2 arises naturally from the score vector, xs, and a truncated diago-

nal matrix (Λr ∈ Rl×l) of the l largest eigenvalues of the covariance matrix (C) to yield

Hotelling T2 [169, 173, 174, 175, 172]:

T 2 = xsΛ
−1
r xT

s = xVrΛ
−1
r VT

r x
T (7.5)

SPE (seen elsewhere as SPE statistic or Q-statistic) is calculated based on the recon-

struction error of PCA, or the information orthogonal to the subspace defined by the prin-

cipal components, S [169, 93]. The information lost when projecting x to the subspace S

can be quantified by calculating x̂ ∈ R1×m, which is the vector x projected to the subspace
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S and then projected back into the original space, O. The reduced eigenvector matrix, Vr,

has orthonormal columns and therefore VT
r Vr = Il where Il ∈ Rl×l is the l × l identity

matrix. Making use of this identity, SPE and x̂ can be calculated as [170, 172, 156]

x̂ = xsV
T
r = xVrV

T
r (7.6)

SPE = (x− x̂)(x− x̂)T (7.7)

Hotelling T2 and SPE were calculated for (historical) validation data and a three-sigma

confidence region constructed. Then, Hotelling T2 and SPE were calculated for test data

and compared to the expected three-sigma region. Data outside of the three-sigma region

were identified as faulty. The fault detection performance is assessed through four typical

fault detection metrics: accuracy, precision, recall, and F1-score. These values quantify the

number of true positive (TP ), true negative (TN ), false positive (FP ), and false negative

(FN ) predictions from the fault detection scheme.

Accuracy =
TP + TN

TP + TN + FP + FN
(7.8)

Precision =
TP

TP + FP
(7.9)

Recall =
TP

TP + FN
(7.10)

F1-Score =
2TP

2TP + FP + FN
(7.11)

7.2.6 ATR-FTIR Quantification Model

Partial least squares regression (PLSR) is a supervised learning technique that accu-

rately predicts collinear with few training experiments; additional information on the PLSR
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model can be in Chapter B [103, 102, 101]. A PLSR model with four components was used

to quantify all ATR-FTIR spectra. The model was calibrated using the training data shown

in Figure 7.1a; the model then was used to predict the mass of anions as a fraction of the to-

tal slurry (wt%slurry) and as a fraction of the total solution (wt%solution). For an experiment

j and chemical component i, these quantities were defined as

wt%slurry
i,j =

mi,j∑a
k=1mk,j

(7.12)

wt%solution
i,j =

mi,j∑b
k=1mk,j

(7.13)

where mi,j is the mass of component i in experiment j, a is the total number of components

in the slurry, and b is the total number of components in the solution phase. Root mean

squared error (RMSE) was used to quantify the performance of the PLSR quantification

model:

RMSE =

√√√√ 1

pq

q∑
i=1

p∑
j=1

(wt%i,j − ŵt%i,j)2 (7.14)

where ŵt%i,j is the model-estimated solution phase weight percent, q is the number of

species predicted by the model, and p is the number of experiments that are being predicted.

wt%solution
i,j is used for all predictions except for subsection 7.3.3 where wt%solution

i,j and

wt%slurry
i,j are compared.

7.2.7 Computation

All data and code can be found on GitHub1. Computation was performed in Python

3.10.13. All packages used for computation include NumPy 1.26.4, scikit-learn 1.5.2,

SciPy 1.14.1, and PyMCR 0.5.1.

1https://github.com/magrover/MSPM-Fault-Detection
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7.3 An Expected Fault – Fouling

This study distinguishes the fouling fault from all other faults: it appeared in nearly all

slurry measurements collected. Because this known fault appeared in nearly all measure-

ments but did not represent a hazardous condition, the effect of the fouling was computa-

tionally removed so that other process faults could be accurately identified.

7.3.1 Gibbsite Fouling

Gibbsite fouling was suggested by analysis of the validation data. Some validation data

(but not all) contained an additional peak around 1020 cm-1 (shown in Figure 7.3) that did

not correspond to any of the known solution species: nitrate, nitrite, sulfate, borate, or

gibbsite which has no observed solution-phase peak in the FTIR spectrum.
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Figure 7.3: ATR-FTIR spectra of training data (black) and validation data that did not
have a significant gibbsite fouling peak appear (yellow) and validation data that did have a
gibbsite fouling peak appear (blue).

To isolate the observed fouling behavior, the ATR-FTIR spectrometer was used to an-

alyze a slurry that comprised 100.00 g H2O, 12.02 g NaOH, and 0.0247 g undissolved

gibbsite (Al(OH)3) at 25◦C. A gibbsite peak was observed which increased with time, as

seen in Figure 7.4. Notably, if the probe was cleaned and reinserted into the solution, the
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peak in Figure 7.4 disappeared. Thus, this peak was inferred to be solid deposition on the

probe surface. At the resolution of the ATR-FTIR instrument, the gibbsite fouling peak

was observed with a peak maximum between 1018 cm-1 and 1022 cm-1. A smaller peak

overlapping with boric acid showed a peak centered between 966 cm-1 and 970 cm-1. These

peaks are reported elsewhere in studies measuring FTIR spectra of gibbsite and potassium

bromide suspensions [176, 177]. The peaks located near 1020 cm-1 and 967 cm-1 are both

attributed to OH bending vibrations of surface hydroxyl sites found in gibbsite (Al(OH)3).

It has been shown elsewhere that gibbsite particles display strong repulsive forces from

other gibbsite particles in strong electrolyte solutions [178]. However, fouling of diamond-

tip probes with gibbsite slurries appears previously unreported.
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Figure 7.4: Gibbsite fouling in the ATR-FTIR spectrum as a function of time since intro-
duction of gibbsite in minutes. The dashed black line indicates six standard deviations of
40 “blank” spectra consisting of 100.00 g H2O and 12.02 g NaOH. The spectra shown are
measured from the same solution with 0.0247 g undissolved gibbsite (Al(OH)3) added.

7.3.2 Computational Removal of Gibbsite Fouling – NCCLS

Since gibbsite fouling appears in nearly all spectra, even those representing normal

process conditions, the contribution of the gibbsite peak was removed using NCCLS for

the remainder of this study except for comparison in Section 7.4.1. Justification for the
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choice of NCCLS is provided in this section.

The three best-performing methods from Chapter 3 were chosen for removing gibbsite

fouling computationally: NCCLS, blind source separation (BSS) with PCA, and BSS with

independent component analysis (ICA) [31]. The performance of these methods can be

seen in Figure 7.5. All three methods removed varying amounts of the aforementioned

gibbsite peak. The effect of the gibbsite removal was quantified via the parity plots shown

in Figure 7.6. Here, RMSE is used to quantify accuracy of the predictions. As shown in

Figure 7.6b, NCCLS was the best-performing method in this study and improved quantifi-

cation compared to that performed with no gibbsite removal (Figure 7.6a).
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Figure 7.5: ATR-FTIR spectra of normal process data with the gibbsite fouling occurring
around 1022 cm-1 where the fouling is removed with a) NCCLS, b) BSS ICA, and c) BSS
PCA.
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Figure 7.6: Quantification of four soluble anions in fault-free slurries (validation and test
data) with a PLSR model with a) no preprocessing and computational removal of the gibb-
site fouling provided by b) NCCLS, c) BSS ICA, and d) BSS PCA [31].

7.3.3 Solution-Phase Training Data

The ATR-FTIR PLSR quantification model was more accurate when predicting wt%solution

rather than wt%slurry. As shown in Section 7.2.1, training data for the ATR-FTIR in-

strument had no insoluble solids while the validation and testing data were multiphase

slurries. Calibrating the sensor model using wt%solution (Figure 7.7a) allowed ATR-FTIR

training data to accurately predict compositions despite the differences between training

data (solutions) and process data (slurries). This is supported by the decreased RMSE

when using wt%solution instead of wt%slurry (0.399 < 1.409). Figure 7.7c shows that us-

ing wt%slurry introduces a model bias that is not present when predicting just the solution

phase (wt%solution). The results presented in Figure 7.7 were attributed to the short path

length of the attenuated total reflectance (ATR) crystal; suspended solids were not effec-

tively interrogated by the laser [179, 53]. This suggested that using wt%solution should

have made ATR-FTIR quantification independent of solids concentration. From the data

presented however, there is no clear indication that model error increases with increasing
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amounts of insoluble solids.

a) b)

c)

Figure 7.7: Parity plots of fault-free validation and testing slurries comparing predicted
wt% from the ATR-FTIR spectrometer after NCCLS preprocessing to gravimetrically mea-
sured wt%. The value of wt% is calculated from a) only the solution phase (wt%solution)
and b) from the entire slurry (wt%slurry). Also shown c) are model residuals (prediction
error) as a function of solids concentration for the two parity plots shown.

7.4 Fault Detection with Multivariate Statistical Process Monitoring

Because training data were collected from two separate phases while validation and test

data were collected from combined slurries, it was not apparent that training data would be

representative of the validation and test data. The SNV-scaled training and validation data

are presented for comparison in Figure 7.8 with NCCLS removal and Figure 7.9 without.

The validation data differed from the training data primarily through the appearance of the

gibbsite peak (1037 cm−1 in Figure 7.9) in the ATR-FTIR spectrum. In Figure 7.8e, the
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gibbsite peak has been removed via computational methods and is no longer visible. The

range of values observed in the validation data in Figure 7.8 (−3 to 3) was similar, though

not identical, to that observed in the training data. This indicated that using disjoint training

datasets for the two phases was sufficient for extracting sources of variation that appear in

the full slurry.
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Figure 7.8: Training compared with validation data; no faults appear in either dataset except
for probe fouling that has been removed using NCCLS in the validation data. The top row
(a, b, and c) are training data while the bottom row (d, e, and f) are validation data. Raman
(a and d), ATR-FTIR (b and e), and FBRM (c and f) data are shown.
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Figure 7.9: Training compared with validation data. No NCCLS was performed to remove
the gibbsite fouling peak from the ATR-FTIR spectra. The top row (a, b, and c) are training
data while the bottom row (d, e, and f) are validation data. Raman (a and d), ATR-FTIR (b
and e), and FBRM (c and f) data are shown.

7.4.1 Statistical Identification of Faults

Figure 7.10a shows Hotelling T2 plotted with SPE for a concatenated vector of Raman,

ATR-FTIR, and FBRM data. A three-sigma region was created based on the validation

(historical) data, and then all data were assessed as being inside or outside the range of

normal operation. Training data may be used to generate expected process statistics instead

(shown in Figure I.1) but did not affect the results of this study. Using (historical) validation

data as was done here may be more robust for fault detection when significant differences

exist between training and process data. For the present study, all normal data (blue) were

within the three-sigma boundary except for two test data that exceeded the interval on the

SPE axis. These anomalous points required further investigation into their false positive

prediction, as investigated in Section 7.4.2.

When gibbsite was not removed from process data, the fault detection accuracy was

negatively impacted with some faults — unanticipated zircon, changing pH, and failing to

shroud the vessel — no longer detected as shown in Figure 7.10b. This result was quantified

in Table 7.2; removing the fouling computationally improved the fault detection metrics of
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accuracy, precision, recall, and F1-score for all non-fouling faults. While the placement of

some data changed in Figure 7.10b compared to Figure 7.10a, the most prominent effect

was the increased size of the three-sigma normal region; there was a greater degree of

overlap between faulty and normal data without the removal of the gibbsite fouling fault.

100 101 102 103

Hotelling T2

102

103

104

105

106

SP
E

a)

100 101 102 103

Hotelling T2

102

103

104

105

106

SP
E

b)
Validation
Test
Heel
Boric Feed
Incorrect GFC
Sensor
Carbonate
Zircon
Stirrer Failure
pH

Figure 7.10: Hotelling T2 and SPE of all process slurries a) with computational removal of
the gibbsite fouling peak and b) without any removal are shown on logarithmically-scaled
axes. A three-sigma confidence interval (ideally covering 98.9% of Gaussian data in two
dimensions) based on validation data is shown in blue. Data without any known faults
are displayed in blue. Data with process faults that have normal composition according to
Table 7.1 and do not produce abnormal sensor measurements are shown in yellow. Data
with the remaining process faults are shown in red.

Table 7.2: Table of error metrics comparing fault detection with the original data vs. data
that has had the gibbsite fouling computationally removed from the ATR-FTIR spectra
using NCCLS.

Metric Original Gibbsite Removal
Accuracy 0.611 0.722
Precision 0.769 0.867
Recall 0.476 0.619
F1-Score 0.588 0.722
Average 0.611 0.732
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Figure 7.11: Sensor data (after SNV scaling) that leads to outliers in Hotelling T2 and/or
SPE. Normal validation data are shown for comparison. Faults are: a) the pH of the solution
becoming more acidic, b) sodium carbonate in the waste, c) zircon in the waste, d) the
Raman probe being unshrouded, e) the Raman probe being not immersed f) the ATR-FTIR
probe not being immersed, g) the FBRM probe not being immersed, and h) the stirrer being
stopped.

The faulty data are classified into two categories based on the sensors’ ability to detect

that a fault has occurred. Detected faults (red data) in Figure 7.10a were identified correctly

and were located outside of the three-sigma confidence interval. “Faulty” data that did not

produce abnormal compositions nor instrument measurements (yellow data) lie within the

three-sigma confidence region in Figure 7.10a. Figure 7.11 shows the correctly identified

faulty sensor data after feature selection, Savitzky-Golay filtering, and scaling. A list of the

different faults, their process relevance, and their relationship to Hotelling T2 and SPE is

shown below.
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• Shifted pH: Altered borate speciation at shifted pH was detectable with ATR-FTIR

[167]. The pH of the slurry was not measured during the experiment; however, the

effect of boric acid speciation as a function of pH is shown by Su and Suarez [180,

181]. Because the altered borate speciation affected a large region of the ATR-FTIR

spectrum (800 – 1500 cm−1), the effect did not appear in the training data and was

classified as a statistical outlier via the SPE axis and is shown in Figure 7.11a.

The experiment that was expected to have had a pH shift was not a designed fault

and rather occured in a slurry that was expected to behave typically (Experiment 8 in

Table H.3). The effect of shifted pH was not reproduced by any other experiment and

was not reproduced when the exact experimental conditions were replicated using

the same instrumentation. Therefore, the fault cannot be confirmed to be due to a pH

shift. However, the disappearance of the borate peak is consistent with a decrease

in pH beyond the pKa of boric acid. Our best hypothesis as to why this particular

experiment had a pH shift is because the sodium hydroxide from the creation of a new

batch of starting solution (water, sodium hydroxide, and gibbsite) may have not fully

dissolved by the start of this experiment. This experiment was the first conducted

with a new batch of starting solution.

Further, pH-dependent ATR-FTIR spectra of borate and boric acid were collected

and shown in Figure 7.12. It is shown that boric acid has its largest peak at 1410

cm−1, while the borate anion has had its largest peak reported at 955 cm−1 [180] and

945 cm−1 [181]. In this study, it is measured at 936 cm−1, which may be an effect of

the concentrated electrolyte solution at 3 m NaOH.
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Figure 7.12: Background-subtracted (solvent-removed) references for boric acid in water
and the borate anion in 3 m NaOH.

• Unanticipated species: All measurements of slurries containing new components

were classified as faults on the SPE axis, owing to the appearance of new signals

that are orthogonal to the training data.

– Unanticipated carbonate: the carbonate peak appeared in the ATR-FTIR spec-

trum at 1384 cm-1. This peak was not removed with the computational fouling

removal because of the local (847 – 1096 cm−1) application of the computa-

tional removal method in this chapter. In the first-derivative FTIR spectrum,

the carbonate peak was observed at 1357 cm-1 in Figure 7.11b. Despite over-

lapping with the nitrate peak in the ATR-FTIR spectrum [21], the slurry with

carbonate was correctly identified as a fault. The experiment that was also an

outlier on the Hotelling T2 axis (Experiment 30 in Table H.3) had an FBRM

spectrum with larger chord-lengths detected (Figure 7.13). This experiment did

not have an otherwise abnormal composition nor were larger particles observed

via an in-line microscope.
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Figure 7.13: The carbonate fault with high Hotelling T2 (Experiment 30 in Table H.3 was
observed to have abnormal FBRM data for the duration of the experiment.

– Unanticipated zircon: The zircon peak appeared in the Raman spectrum at 1377

cm-1 [19]. Zircon has prominent peaks in the Raman spectrum (Figure 7.11c),

so it appeared as an outlier on the SPE axis since the signal did not appear in

the training data and therefore did not appear in the principal components.

• Heel composition: This fault was not linearly separable from training data using

Hotelling T2 and SPE. These data produced statistically similar measurements to the

training and validation data, so there was no distinguishing feature to separate these

data from normal operation. In other words, this fault did not lead to out-of-spec

composition nor measurement, so it was correctly not identified as a fault.

• Boric acid in feed stream: This fault was not classified as an outlier from normal

data on the Hotelling T2 and SPE axes. However, the composition of this tank was

out-of-spec for Tank 1, which has no boric acid present in this study. However, since

the data from all three tanks were not distinguished, the appearance of boric acid in

Tank 1 was not flagged as an outlier. If more data of each tank were available, a

separate normal operating region could be constructed for each tank. Additionally, it
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may be feasible to utilize a model-based approach utilizing spectra quantification to

detect faults from composition information [32].

• Incorrect GFC addition: This fault was not linearly separable from training data using

Hotelling T2 and SPE. These data were not statistical outliers based on measurements

alone, nor were the compositions of the resulting experiments outside of the bounds

of Table 7.1. However, if the Raman sensor of this study estimated slurry compo-

sition, this fault may have been detectable with a model-based approach as done in

Chapter 6 in this thesis [32].

• Sensor failure: All sensor failures appeared outside the three-sigma confidence re-

gion by significant margins on the SPE axis and not the Hotelling T2 axis. This

suggested that the instrument failure types studied here were orthogonal to the train-

ing data, rather than having been significant variation in the direction of the principal

components. This conclusion was supported by the instrument data shown in Fig-

ure 7.11d–g. Given the currently studied axes, these sensor faults appeared in similar

regions as significant process faults, which may make fault diagnosis more challeng-

ing based on the methods presented here.

• Stirrer failure: A significant change in FBRM measurement with fluid velocity at the

probe tip affected the measured chord-length distribution from the FBRM’s spinning

laser. The sensor observed a significant increase in counts at large chord-lengths, as

shown in Figure 7.11h. Our stirrer had an outer diameter of 38 mm and an angular

velocity of 400 rpm, giving a linear velocity at the impeller tip to be 0.80 m
s . The scan

speed of the FBRM laser for our instrument was 2 m
s . For the particle sizes studied

(approximately 5 µm), a Stoke’s law study shown in Figure 7.14 suggested that par-

ticles in the system were still suspended during mixing failure measurement, taken

here five minutes after the stirrer is stopped. Published literature conflict on the de-

pendence of FBRM on fluid velocity with some authors reporting negligible changes
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and others reporting significant changes [182]. This is likely a system-dependent

phenomenon, but was detectable here as a significant outlier on the Hotelling T2 and

SPE axes. Exceeding normal operating regions on both axes indicated that unantic-

ipated variation was observed in the direction of principal components and in the

direction orthogonal to the principal components.

In Figure 7.14, the settling velocity and time are shown for a spherical silica particle

as a function of particle radius. In addition to this calculation, experimental results

showed that the altered FBRM result occurred in under 60 s of the stirrer being

stopped, and did not change significantly when waiting five minutes. The FBRM

data after five minutes was used in Experiment 9 in Table H.3. The calculated time

for a 5 µm silica particle to fall 2 cm (approximation of sensor depth in slurry) was

calculated to be 790 s (13.2 min).
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Figure 7.14: Stoke’s Law for a spherical silica particle in water at 25◦C. The a) settling
velocity and b) 2 cm settling time are shown as a function of particle radius.

Based on the faults studied here, the SPE axis appeared more useful for detecting faults

in sensors and unanticipated chemistry. The Hotelling T2 axis provided no substantial ben-

efit in this study, though it may have been flagged if compositions outside of the bounds

provided in Table 7.1 were studied (i.e. an experiment has more sodium nitrate than typi-

cal).
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A confusion matrix showing the number of correctly and incorrectly classified data

is shown in Figure 7.15. Intuitively, all false negatives (type II errors) were a result of

faults that did not produce outliers in the composition nor measurement. There were two

unanticipated false positives (type I errors). In addition, the test point in Figure 7.10a that

has part of its marker outside of the three-sigma confidence region was investigated as

well since it was almost classified as a fault. Both false negatives and false positives are

discussed in the following two sections.
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Figure 7.15: Confusion matrix showing classes of predicted and actual faults in process
data based on all process data from the study and corresponding to Figure 7.10a.

7.4.2 False Positives (Type I Errors)

As shown in the previous section (Figure 7.10a), there were two experiments that were

classified as outliers, but had no fault associated with them. These data were false posi-

tives. In the context of nuclear-waste processing, these events did not represent hazardous

conditions, but may have delayed processing until the cause of the abnormal reading was

successfully identified using other techniques, such as grab-sampling. These data were

outliers on the SPE axis but not the Hotelling T2 axis, suggesting that a signal orthogonal

to (i.e. not in the plane of) the training data appeared in these data. Simply, the chemical

mixture was not outside normal bounds, but something new occurred. The data from these
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two outliers were investigated to determine how the faulty classification resulted from the

sensor measurement.

The two outlier data (Experiments 24 and 25 in Table H.3), as well as one datum that

was on the edge of the normal region (Experiment 21 in Table H.3), are plotted in Fig-

ure 7.17 along with the validation data. The scaled Raman data in Figure 7.17a suggested

that there were new peaks appearing in the range 380 – 390 cm−1 and at 415 cm−1. In

the unfiltered and unscaled Raman spectrum shown in Figure 7.16, there were no peaks

in the range 380 – 390 cm−1 and 415 cm−1 corresponded to the sapphire probe window.

However, the first derivative Raman spectra without SNV scaling (Figure 7.17b) showed

that these outliers were caused by subtle shifts in signal slope in these regions. The vali-

dation data had little variation, shown by the closely overlapping signals, causing the fault

detection algorithm to be sensitive to spectral differences in this region. To address this

situation, feature selection in the Raman spectrum could be employed to remove these sen-

sitive features from flagging a faulty condition when the process condition is normal, or by

constructing a richer training set.
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Figure 7.16: Unscaled and unfiltered Raman spectra of all validation data with the two
outliers from the main text highlighted in black.

The one datum that was almost an outlier in the SPE axis in Figure 7.10a is referenced

as “near outlier” in Figure 7.17c and Figure 7.17d. The data in Figure 7.17c associated

173



Chapter 7. Data-Driven Fault Detection in Industrial Slurries Steven H. Crouse

with the outlier was caused by a shift in the FBRM data to larger chord-lengths for this

particular experiment (shown in Figure 7.17d). Out of the experimental space studied, this

measurement had the second-lowest amount of total solids, while also having a relatively

large amount of insoluble gibbsite and relatively small amount of silica. This experiment

was nearly detected as a fault because of its composition was on the edge of the experimen-

tal space studied leading to a unique FBRM signal.
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Figure 7.17: Sensor data corresponding to two false positives and one near-false positive.
Validation (normal) data are plotted with the outliers for reference. The first column shows
SNV-scaled data for a) Raman and c) FBRM. The second column shows b) unscaled Ra-
man spectra after taking the first derivative with respect to wavenumber and d) unscaled
FBRM data.

7.4.3 False Negatives (Type II Errors)

In nuclear-waste processing, false negatives represent significant process hazards; an

unidentified faulty process may lead to significant process downtime or hazardous condi-

tions. There were three conditions that were undetectable using the instrumentation and

methods of this study: change in heel composition, boric acid in the feed stream, and in-

correct GFC addition. Since these conditions did not produce measurement outliers in the

statistical sense, a non-data-driven approach, i.e. a process model or soft sensor, may pro-
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vide another axis in which to separate these data. Interestingly, all three of these process

faults did not create abnormal chemical compositions. However, composition estimation

through spectra-to-composition models or mass balance models may allow these events to

be detected. Companion results and error metrics that do not include the undetectable faults

of this chapter are shown in Figure I.2.

7.5 Data Fusion vs. Single-Instrument Fault Detection

Fault detection with individual instruments was compared to the array of sensors pre-

sented in the previous section. These results are presented in Figure 7.18 and visualized in

confusion matrices in Figure 7.19. It was apparent that the combination of all three instru-

ments better discerned a faulty state (Figure 7.19a, bottom right quadrant) compared to any

individual instrument.

The effect of fusing the information of the three sensors for fault detection was quan-

tified in Table 7.3. The combination of all instruments outperformed single sensors with

respect to accuracy, recall, and F1-score. However, both the ATR-FTIR sensor and FBRM

sensor individually outperformed the combination of all instruments with respect to pre-

cision. As mentioned in Section 7.4.2, the Raman spectrometer collected measurements

listed as “normal,” but that appeared faulty compared to the three-sigma normal region.

The identification of false positives reduced the precision for the Raman spectrometer, and

therefore the precision of the combination of instruments was impacted.

Of the individual instruments, FBRM had the highest precision, Raman had the best re-

Table 7.3: Table of error metrics corresponding to Figure 7.18.

Metric All Instruments Raman ATR-FTIR FBRM
Accuracy 0.722 0.611 0.611 0.556
Precision 0.867 0.818 0.889 1.000
Recall 0.619 0.429 0.381 0.238
F1-Score 0.722 0.562 0.533 0.385
Average 0.732 0.605 0.604 0.547
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Figure 7.18: Hotelling T2 and SPE on logarithmically-scaled axes with a three-sigma con-
fidence interval (ideally covering 98.9% of data in two dimensions) based on validation
data. Plot a) uses only Raman data, plot b) uses only ATR-FTIR data, and plot c) uses only
FBRM data. Data without any known faults are displayed in blue. Data with process faults
that have normal composition according to Table 7.1 and do not produce abnormal sensor
measurements are shown in yellow. Data with the remaining process faults are shown in
red.

call and F1-score, and Raman and ATR-FTIR had the best accuracy. In the dataset studied,

the FBRM sensor model detected the fewest false positives due to its stable interrogation

of chord-lengths providing little unanticipated variation. This led to the FBRM having

the highest precision in comparison to the other sensors. Meanwhile, the Raman and ATR-

FTIR sensors, with their ability to interrogate the chemical behavior of the slurry, were able

to correctly place more data into their correct categories (higher accuracy than FBRM). This

suggests that either the ball-probe Raman spectrometer or ATR-FTIR instrument may be

useful as a single instrument for fault detection in slurries, depending on faults of greatest

concern. However, the Raman instrument did correctly identify the most faults (highest

recall) but also suffered from a relatively large number of false positives in this dataset
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Figure 7.19: Confusion matrices showing classes of predicted and actual faults in process
data based on Figure 7.10a and Figure 7.18. Shown are a) data fusion, b) Raman, c) ATR-
FTIR, and d) FBRM schemes used for fault detection.

(low precision). The FBRM as a single sensor was limited in its ability to distinguish the

faults studied in this chapter (low recall). However, mixing changes, as well as changes in

particle size distribution (PSD) (not studied here), may make the FBRM sensor valuable

in a fault detection platform. In this chapter, the combination of three sensors allowed for

robust fault detection of both phases of the slurries studied.

Despite the array of three sensors (Raman spectroscopy, ATR-FTIR spectroscopy, and

FBRM) performing better than the individual instruments according to most fault detection

metrics, the individual instruments still provided value in their specificity of faults detected.

This suggests that the individual instruments may be used for fault diagnosis to a partic-

ular phase or instrument in slurry systems. One can also envision the complementary use

of other sensors for real-time and remote fault detection in nuclear-waste processing. For
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example, laser induced breakdown spectroscopy (LIBS) may provide elemental informa-

tion and has been investigated in the context of nuclear waste [183, 184] and combined

with Raman spectroscopy [185]. Other measurements of temperature, pH, or radiological

profile may also provide complementary and important real-time process information.

7.6 Conclusion

A combination of three instruments — Raman, ATR-FTIR, and FBRM — was used in

examining the potential for real-time fault detection in hazardous multicomponent slurries

typical of those found in nuclear-waste processing at the Hanford site. Faults that may

occur during chemical processing were tested via an experimental dataset that was con-

structed based on a simulated three-tank system with heel masses. Studied faults include

shifting pH, unanticipated species in the solution or insoluble phase, sensor failures, and

mixing failure. An additional fault, gibbsite fouling on the surface of the ATR crystal, was

observed and subsequently removed computationally using NCCLS. The computational

removal resulted in better fault detection in terms of accuracy (0.611 → 0.722), precision

(0.769 → 0.867), recall (0.476 → 0.619), and F1-score (0.588 → 0.722).

Compared to each individual instrument, the combination of the three instruments im-

proved the fault detection capabilities as measured by accuracy (0.895), recall (1.000), and

F1-score (0.923). Precision (0.857) of the combined data sources did not exceed that of the

ATR-FTIR instrument alone (0.857) nor the FBRM instrument alone (1.000). These re-

sults were caused by the Raman instrument reporting anomalous readings on experiments

designed to be normal, suggesting the importance of training set design, scaling, and fea-

ture selection when performing MSPM with these sensors.

The three-sensor platform studied here provides useful fault detection information re-

motely and in real-time to supplement or replace offline monitoring in hazardous chemical

processes, such as nuclear-waste processing. The methods studied here are data-driven

and therefore do not rely on the development of a process model to operate. The results
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presented here illustrate the potential for timely fault detection without unnecessary radio-

logical or chemical exposure to human workers operating hazardous slurry processes.
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CHAPTER 8

FUTURE DIRECTIONS AND PAST REFLECTIONS

In this chapter, the contributions of this thesis are summarized as they pertain to the sci-

entific knowledgebase. Areas where additional work remains to be done are also discussed.

8.1 Chapter 1

Chapter 1 motivates this thesis and provides contextual background for the studies pre-

sented. However, there are still issues beyond technical that may limit the implemen-

tation of process analytical technology (PAT) in actual nuclear-waste processing. Fore-

most among these is the political landscape around waste remediation. In recent memory,

nuclear-waste remediation has been a bipartisan issue with support by both major politi-

cal parties in the United States [186, 187]. However, individuals and organizations still

disagree about the best technical path forward for immobilizing the waste [15, 188]. For

example, the decision to vitrify all of the waste at Hanford was largely a political decision

made with all stakeholders1 in agreement (some scientists/engineers question the need for

expensive glass storage when cementitious forms are cheaper [188]). In addition, a long-

term storage location for high-level waste (HLW) in the United States is still unknown, with

the planned Yucca mountain repository being cancelled [186, 40]. Despite these potential

obstacles, nuclear-waste vitrification is proceeding as planned at the Hanford site with the

first radioactive batches at Hanford expected in the next few months following the submis-

sion of this thesis. Current plans do not include in-line PAT at Hanford, but there is still

1Key stakeholders at Hanford include the Washington State Department of Ecology, The U.S. Environ-
mental Protection Agency, the United States Department of Energy (US DOE), the Confederated Tribes of
the Umatilla Indian Reservation, Yakama Nation, the Nez Perce Tribe, the Wanapum Tribe, the Confederated
Tribes of the Colville Reservation, the Oregon Department of Energy, the Washington State Department of
Health, the Washington Department of Fish and Wildlife, Tri-City Development Council, Central Washington
Building Trades Council, Hanford Atomic Trades Council, Benton Community, Franklin Community, Grant
County Governments, Richland City, West Richland City, Pasco City, and Kennewick City [189].
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intellectual support and funding from the US DOE to enable sensor technology that may

be implemented in either low-activity waste (LAW) or HLW vitrification.

8.2 Chapter 2

Chapter 2 examined waste simulants from the Savannah River Site and proposed a new

blind source separation (BSS) algorithm that effectively removed glycolic acid contribu-

tions that did not have training data available. BSS is well-established for use in general

signal processing, and it works well on spectroscopic signals typical of nuclear waste.

Where larger amounts of data exist, nonlinear component estimation techniques (artificial

neural networks) may be useful. However, for the nuclear-waste system studied in Chap-

ter 2, the linear methods operated well and were functionally transparent.

The spectroscopic literature in nuclear waste has primarily utilized BSS to model multi-

component mixtures without addressing other processing variables (i.e. temperature, pres-

sure, etc.) Therefore, there is opportunity to study BSS methods in the context of processes

that have shifting process parameters, such as the shifting pH that was shown in Chapter 2.

The option exists to integrate further constraints (beyond concentration nonnegativity and

known target spectra) to improve the performance of multivariate curve resolution - alter-

nating least squares (MCR-ALS)2 in finding accurate and physically meaningful sources.

8.3 Chapter 3

Chapter 3 solved the problem of computationally removing (unknown) non-target species

using a novel method: a constrained quadratic programming problem that leverages the

nonnegativity of all spectral components, even non-targets. A result of this constrained

optimization approach is that non-target removal can be performed with only a single spec-

trum; no historical data are required.

This chapter has several avenues for continued development, as the method introduced

2Much literature with MCR-ALS overlaps with the broader field of nonnegative matrix factorization.
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was introduced with the content of this thesis and its related publication [31]. Firstly, the

nonnegative constraint on non-target components may be hypothesized to be applicable to

other types of spectral fitting beyond classical least squares (CLS) (i.e. partial least squares

regression (PLSR), MCR-ALS, independent component analysis (ICA), etc.) Secondly,

nonnegatively constrained classical least squares (NCCLS) performs better when feature

selection has been applied since the hard constraint of NCCLS is sensitive to regions with

low signal-to-noise ratio (SNR); this may be addressed by reformulating the optimization

as a soft constraint rather than a hard constraint. This reformulation may increase the space

of feasible solutions, when there may be no solutions that satisfy the hard constraint at

every wavenumber (i.e. the optimization fails). Thirdly, there is the unstudied issue of

algorithm convergence. While the quadratic objective function is convex and can be solved

with a local solver, the hard constraints of NCCLS mean that there may be no feasible

solutions. In the context of comparison methods (BSS), there is opportunity to study the

conditions of a feasible solution for NCCLS. Lastly, feature transformations that further

distinguish overlapping peaks, such as differentiating spectra with respect to wavenumber,

may allow for more accurate non-target removal. However, spectral nonnegativity from the

Beer-Lambert Law no longer applies after differentiating spectra; negative first-derivative

spectral contributions are allowed. Rather than using nonnegativity, one may be able to use

the fact that non-target spectral contributions should not be in directions opposite in sign to

the target species; this behavior/constraint would be wavenumber-dependent.

8.4 Chapter 4

Chapter 4 demonstrated that a ball-probe Raman spectrometer can be used to analyze

the insoluble phase of a slurry3 while attenuated total reflectance - Fourier transform in-

frared (ATR-FTIR) spectroscopy can be used to interrogate the solution-phase of a slurry.

It was shown that locally-linear methods (i.e. PLSR and indirect classical least squares
3Soluble species appear in the Raman spectrum in the presence of insoluble solids. However, their peak

intensities were greatly reduced and depended on the amount of solids present.
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(ICLS)) were effective in predicting the composition of waste from these spectra, but there

were unmodeled nonlinearities in the Raman spectrum.

The quantity of experimental data presents a challenge for modeling nonlinearities that

were present in the slurries measured. The reproducibility of the data suggest that there

is deterministic map from the slurry composition to the observed measurement; the mea-

surement is not dominated by stochastic behavior or noise. However, slurry experiments

are time- and resource-intensive to conduct compared to solution-phase only experiments,

which limits the number of practically obtainable data. In the context of this thesis, a ball-

probe Raman spectrometer has not been used to measure time-series experimental data;

this was done with an ATR-FTIR probe in Chapter 2. Lastly, there has not been thorough

investigation into parsing two phases from a nuclear-waste slurry measurement with a ball-

probe Raman spectrometer. An outstanding issue is that the solution phase has low signal

when measuring a slurry. The only solution-phase peak that the author has observed to be

significantly present in nearly every slurry measurement (at conditions similar to what may

be expected at Hanford) is that of the nitrate anion (NO−
3 ), which is highly Raman-active

and at high concentrations in much Hanford waste.

8.5 Chapter 5

Chapter 5 used data transformations from physically-motivated variable pathlength and

optically saturated models to analyze the slurry data presented in Chapter 4. It was found

that using mass fraction of the insoluble phase (motivated by the assumption of a constant

number of photons returning to the detector) rather than concentration/density of the entire

slurry somewhat improved quantitative accuracy as measured by R2. While these results

were promising, the assumptions leading to the models used in this chapter were difficult

to verify. Consequently, reducing the number of assumptions to work with an attenuation

model with fewer assumptions had too many parameters to effectively identify a model

based on available experimental data. It is plausible to imagine that an accurate model of
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optical attenuation in multicomponent slurries could be identified if an abundance of ex-

perimental data were available. Additionally, neither this chapter nor Chapter 4 considered

variable particle size, which would be another process variable that would impact optical

attenuation of the Raman laser and Raman-scattered photons.

8.6 Chapter 6

Chapter 6 used a dual-Kalman filter to estimate the states (mass) and parameters (heel

mass fraction) of three tanks in series. This chapter introduced a way to detect the change

in heel mass composition in a single tank based on measurements of all tanks enabled

by real-time sensors. While the proof-of-concept has been demonstrated in this compu-

tational study, these ideas have not been verified with an experimental system. Notably,

the sensor accuracy demonstrated in Chapter 4 would suggest that the sensor measure-

ments may be noisy in a multicomponent slurry. This makes accurate parameter estimation

challenging if heel-mass changes result in sensor deviations on the same scale as instru-

ment noise. The inherent sensor noise with the slurry spectra-to-composition models of

this thesis represent a practical bottleneck for providing accurate and timely indication of

heel-mass changes; though it was demonstrated to be possible with a 50% change in heel

mass in the computational case study in this chapter. There may be an opportunity to fol-

low up this proof-of-concept with a quantitative study of heel-mass change detection given

spectra-to-composition accuracy.

8.7 Chapter 7

Chapter 7 used principal component analysis (PCA), Hotelling T2, and squared predic-

tion error (SPE) to combine the information from Raman spectroscopy, ATR-FTIR spec-

troscopy, and focused beam reflectance measurement (FBRM). Then, multivariate statisti-

cal process monitoring (MSPM) was performed and unseen abnormal process conditions

were identified. Not explored in this chapter was the specificity of the three instruments
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used in the data fusion study; i.e. if a fault was identified with the ATR-FTIR sensor, it

likely resulted from something impacting the solution phase. Additionally, this study did

not explore faults that would lead to an abnormal reading on the Hotelling T2 axis. This

could be accomplished by introducing samples that had out-of-spec compositions based on

the training data (i.e. samples with abnormally high concentrations of sodium nitrate). Ad-

ditionally, the specificity of the three individual tanks were not considered; for example, the

first tank would not have glass-forming chemicals (GFCs) present. Lastly, this chapter was

connected to Chapter 6 and a dual-Kalman filter was used to identify altered heel masses in

the study. However, the sensor noise was greater than the change in composition provided

by the changed heel masses (as mentioned in the previous section) in this particular study

for both the Raman and ATR-FTIR sensors, so this study was not pursued further.

8.8 Final Remarks

In summary of this thesis, vibrational spectroscopy can be used to obtain useful infor-

mation from solutions and slurries, and this thesis presents methods for analyzing sensor

data and making use of the sensor data in the context of chemically processing radioactive

slurries.

185



Appendices



APPENDIX A

SCALING: THE STANDARD NORMAL VARIATE TRANSFORM

Standard normal variate (SNV) scaling (also seen as standard scaling) is achieved by

subtracting the mean sample from a dataset and dividing by the sample’s standard deviation

so that the sample has unit variance. This type of scaling is prevelant in many data science

applications [59], and is used in Chapter 2, Chapter 3, and Chapter 7 in this work. Given

matrix of data, Xunscaled ∈ Rn×w, the SNV-transformed data can be found by subtracting

the mean feature vector across all samples of training data, µ ∈ R1×w, and the feature-

specific variance using the diagonal matrix defined as Σ = diag(σ1, ..., σw) ∈ Rw×w where

σ1, ..., σw are the variances of each feature in the data [190]. This gives the scaled matrix,

X ∈ Rn×m.

Let H ∈ Rn×n be a centering matrix that subtracts the mean sample from each sample

of X:

H = In×n − 1

n
1T1

µ =
1

n
1Xunscaled

(A.1)

where 1 ∈ R1×n is a vector of 1’s (i.e.
[
1 1 · · · 1

]
). Let Σ = diag(σ1, ..., σw) ∈ Rw×w be

a scaling matrix where σ1, ..., σw are the variances of each feature in the data [190].

Σ =



σ1

σ2

. . .

σw


σi =

√
1

n− 1
[XT

unscaledXunscaled]ii

(A.2)
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The full SNV expression can be succinctly written as the above functions as

X = HXunscaledΣ
−1 (A.3)

Where relevant, the SNV transformation is applied to all data but fit to only training data

when used for quantification in this thesis.
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PARTIAL LEAST SQUARES REGRESSION

Partial least squares regression (PLSR) is used to quantify spectra throughout this the-

sis, and so a section on PLSR is included here in the appendix. PLSR has also seen ex-

tensive use quantifying solutions and slurries typical of nuclear waste; the model has been

well-reported in its ability to quantify complex mixture spectra with overlapping spectral

bands, particularly when monitoring nuclear-waste solutions with vibrational spectroscopy.

Recent work in nuclear-waste monitoring has applied PLSR to: locally linear regimes us-

ing piecewise PLSR with absorbance spectroscopy [25], multiple species in real Hanford

waste using Raman spectroscopy [24], and sodium salt solutions with a limited training set

using attenuated total reflectance - Fourier transform infrared (ATR-FTIR) spectroscopy

and Raman spectroscopy [21].

Extensive literature exists that details and motivates the PLSR method [191, 192, 193,

102, 194]. The notation of Wold et al. is used here [102]. Assume that two data matrices,

X ∈ Rn×w and Y ∈ Rn×s have been scaled via the SNV transform where there are n

samples, w features (wavenumbers), and s chemical components1.

The x-scores, T, can be found from

T = XWT (B.1)

where W are coefficients (weights). X is then modeled as a function of x-scores (T) and

loadings, P, and some model error, E:

X = TPT + E (B.2)
1In the literature, PLSR is often developed using complex (i.e. Cn×m) matrices and so the conjugate

transpose, ◦∗, may be required in some spots where transpose (◦T) is used here
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Y is also modeled in a similar way, being decomposed into y-scores (U), weights (C),

and model error (G):

Y = UCT +G (B.3)

The notable advancement of PLSR is that the x-scores (T) can be used to model Y with

model error, F:

Y = TCT + F (B.4)

Equation B.1 can be inserted into Equation B.4 to yield an equation where Y is an

equation of X yielding a linear model:

Y = XB+ F

B = WTCT

(B.5)

The parameters used in Equation B.5 can be found from the data (i.e. X and Y) from

existing algorithms, such as the nonlinear iterative partial least squares (NIPALS) algo-

rithm [103, 195]. In this thesis, the scikit-learn version of PLSR is used with the NIPALS

algorithm.
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APPENDIX C

ANALYTICAL EXPRESSION FOR ERROR ESTIMATE

Results are presented in this section that show how an error estimate was analytically

calculated for Chapter 3. In Chapter 3, EA is approximated via a probabilistic approach

by assuming that the elements of EA (test data error matrix) and ÉA (training data error

matrix) are independent and identically distributed (i.i.d.):

(ei,1, ..., ei,w for i = 1, ...,m) ∼ N (µ́, σ́2)

(éi,1, ..., éi,w for i = 1, ..., n) ∼ N (µ́, σ́2)

(C.1)

where ei,j is the jth wavenumber of the ith residual spectra of matrix EA and éi,j is the jth

wavenumber of the ith residual spectra of matrix ÉA. The scalars µ́ and σ́ are the matrix

mean and matrix standard deviation, respectively, of the matrix of residuals found from the

training data, ÉA:

ÉA = Á− ĆK (C.2)

where Á ∈ Rn×w is a matrix of training spectra, Ć ∈ Rr×n is a matrix of corresponding

concentrations, and ÉA ∈ Rn×w is a matrix of model training error. The i.i.d. assumption

in this work allows a single Gaussian distribution to be fit to all elements of the resid-

ual matrix, ÉA (including across different wavenumbers and different experiments). The

assumption of i.i.d. and Gaussian error may be relaxed by using other distributions or a

separate distribution for each wavenumber, in the case of a wavenumber-dependent error.

After selecting an appropriate error distribution for the application, an estimated cumula-

tive distribution function (CDF) is extracted from the selected distribution(s) and training

data.

Using the CDF from training data, ÉA, a calculated representative matrix, ÊA, is found
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to bound expected model error, EA. Based on the i.i.d. assumption stated in Equation C.1,

Equation C.3 approximates ÊA as a matrix comprised of the scalar bound, b:

ÊA =


b . . . b

... . . . ...

b . . . b

 ∈ Rm×w (C.3)

b = f(µ́, σ́) (C.4)

where b is a function of µ́ and σ́. The value of b will be found from training data in this

work. L is the probability that all elements of the residual matrix for a single residual

spectrum (éi,1 through éi,w) are all less than or equal to a nonnegative upper bound on the

residuals, b:

L = P
( w⋂
j=1

(éi,j ≤ b)
)
= 0.5 (C.5)

where
⋂

represents the intersection of stochastic events. L is set to 0.5 so that, on average,

50% of residual spectra, EA, are over-estimated by ÊA and 50% are under-estimated by

ÊA.

From the assumption that the residuals at all wavenumbers are independently and iden-

tically distributed, éi,1, ..., éi,w ∼ N (µ́, σ́2), the intersection of independent events sim-

plifies Equation C.5 into the product of independent events since the residuals at every

wavenumber all have equivalent probability of exceeding the scalar bound b under i.i.d.

assumptions:

L = P
( w⋂
j=1

(éi,j ≤ b)
)
=

w∏
j=1

P(éi,j ≤ b) = P(éi,j ≤ b)w (C.6)

L = P(éi,j ≤ b)w =⇒ P(éi,j ≤ b) =
w
√
L (C.7)
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Equation C.7 shows the probability of any individual residual, éi,j , being less than or

equal to b. P(éi,j ≤ b) can be simplified by using using training data to find the CDF of a

Gaussian distribution, F (b, µ́, σ́):

F (b, µ́, σ́) =
1

2

[
1 + erf

(b− µ́

σ́
√
2

)]
= P (ei,j ≤ b) (C.8)

Combining Equation C.7 and Equation C.8 yield an expression for b:

b =
√
2σ́erf−1

(
2

w
√
L− 1

)
+ µ́ (C.9)

Equation C.9 gives b, the residual bound in ÊA that was found by fitting ÉA and is pre-

dicted to describe EA based on the assumption of i.i.d. measurement error between training

and process experiments and uniformly distributed error between wavenumbers. For the

computational experiments, b was roughly 2.7 standard deviations; there was experiment-

to-experiment variation because different pseudorandom initializations had slightly differ-

ent noise realizations. For experimental Raman spectroscopy data, b was approximated by

2.864 standard deviations. For experimental ATR-FTIR data, b was approximated by 2.424

standard deviations.
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APPENDIX D

SUPPLEMENTAL RESULTS FOR COMPUTATIONAL NON-TARGET

REMOVAL

The following results provide additional investigation into the studies of Chapter 3,

including the computational efficiency of the methods presented as well as the experimental

results analyzed in a “batch” rather than “real-time” manner.

D.1 Computational Efficiency and varied Training Data

For Computational Study 2, the different preprocessing methods were compared in

terms of computation time of training and prediction (if there were separate training and

prediction steps). This comparison may highlight which preprocessing methods were most

suitable for real-time monitoring applications. It should be noted that different industries

will have different requirements in terms of spectra acquisition times and quantification

turnaround.

Figure D.1 shows the processing times with different amounts of non-target peak over-

lap. There was no significant trend in the computation time of these methods with increas-

ing non-target peak overlap. This suggests that even in cases of a non-target peak that

overlaps significantly with target peaks, the computation time of all methods did not signif-

icantly change. Figure D.2 shows the computation times of the preprocessing methods as

the amount of measurement noise was varied. No appreciable trend was noted. Figure D.3

shows that the convolutional denoising autoencoder (CDAE) training time increases faster

than linearly with time. Additionally, principal component analysis (PCA) training and

nonnegatively constrained classical least squares (NCCLS) prediction increased faster than

linearly with time, but was still on the order of fractions of a second for all cases studied

in this work. Figure D.4 shows that blind source separation (BSS) independent component
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analysis (ICA) increased faster than linearly with time. Additionally, NCCLS training and

PCA prediction also increased faster than linearly with time.

These results suggested that CDAE cannot effectively train on large datasets in some

real-time scenarios while BSS ICA cannot work with large batches of historical data in

some real-time scenarios. Other than these two exceptions, all methods operated signif-

icantly faster than one second on the studied hardware for training and/or preprocessing,

suggesting that they were all viable for most industrial real-time scenarios.
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Figure D.1: Comparison of computation times for different preprocessing methods as a
function of non-target peak overlap. Error bars correspond to full range of five repli-
cates used for this study. The two plots are distinguished by different scaling where a)
(larger computation times) contains quantification with no preprocessing and CDAE and
b) (smaller computation times) contains PCA, spectral residual augmented classical least
squares (SRACLS), BSS ICA, BSS PCA, and NCCLS.
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Figure D.2: Comparison of computation times for different preprocessing methods as a
function of instrument (spectra) noise. Error bars correspond to full range of five repli-
cates used for this study. The two plots are distinguished by different scaling where a)
(larger computation times) contains quantification with no preprocessing and CDAE and
b) (smaller computation times) contains PCA, SRACLS, BSS ICA, BSS PCA, and NC-
CLS.
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Figure D.3: Comparison of computation times for different preprocessing methods as a
function of number of training data. Error bars correspond to full range of five replicates
used for this study. The two plots are distinguished by different scaling where a) (larger
RMSE values) contains quantification with no preprocessing and CDAE and b) (smaller
root mean squared error (RMSE) values) contains PCA, SRACLS, BSS ICA, BSS PCA,
and NCCLS.
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Figure D.4: Comparison of computation times for different preprocessing methods as a
function of number of testing data. Error bars correspond to full range of five replicates
used for this study. The two plots are distinguished by different scaling where a) (larger
RMSE values) contains quantification with no preprocessing and CDAE and b) (smaller
RMSE values) contains PCA, SRACLS, BSS ICA, BSS PCA, and NCCLS.
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Figure D.5: Comparison of Target 2 RMSE for different preprocessing methods as a func-
tion of number of training data. Error bars correspond to full range of five replicates used
for this study with pseudorandom spectra and model initializations. The inset plot is dis-
tinguished by a “zoomed in” scaling.

Figure D.5 shows the effect different amounts of training data (4–10,000) had on the

preprocessing methods. In Figure D.5, all of the methods had slightly reduced performance

and/or greater prediction variance at the lowest number of training data studied (four train-

ing data). This resulted from the quantification model being more vulnerable to noise given

only four training data. Additionally, at training data exceeding 3,270 individual spectra,

the performance of BSS ICA decreased substantially. This behavior was observed to cor-

respond to the scikit-learn implementation of the fastICA algorithm being occasionally

unreliable in finding a solution (notice the large variance in Figure D.5). Aside from the

trends observed at low data and high data for BSS ICA specifically, all methods did not

appear to be significantly affected by varying the amount of training data provided.

D.2 Experimental Results Analyzed in a Batch-Analysis Manner

The experimental data from Chapter 3 were also analyzed in a batch preprocessing

(rather than real-time) analysis scenario and are shown in Figure D.6 and Figure D.7. PCA,

BSS ICA, and BSS PCA improved performance in general when operating in a batch pre-
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processing scenario. PCA was then the most accurate preprocessing method for the Raman

spectra, while NCCLS remained the most accurate preprocessing method for the ATR-

FTIR spectra.
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Figure D.6: Parity plots quantifying nitrate, nitrite, and sulfate from Raman spectra prepro-
cessed using: a) no preprocessing, b) PCA, c) SRACLS, d) CDAE, e) BSS ICA, f) BSS
PCA, and g) NCCLS.
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Figure D.7: Parity plots quantifying nitrate, nitrite, and sulfate from ATR-FTIR spectra
preprocessed using: a) no preprocessing, b) PCA, c) SRACLS, d) CDAE, e) BSS ICA, f)
BSS PCA, and g) NCCLS.
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APPENDIX E

PEAK IDENTIFICATION FOR LOW-ACTIVITY WASTE SYSTEM

Reference spectra and peak identification was done in close collaboration with Dr. Ru-

panjali Prasad, and so the results have been removed from this thesis for not being inde-

pendent work of the author. However, these results are relevant to the surrounding text and

may be of interest to the reader. These results are highlighted here and presented in their

entirety in a journal publication [19].

Soluble Species

The Fourier transform infrared (FTIR) and Raman reference spectra of soluble glass-

forming chemical (GFC) components (vanadium pentoxide, boric acid, and lithium car-

bonate) in a 3 m NaOH solution (pH greater than 13) are shown in Figure E.1. All FTIR

spectra in Figure E.1a have a water band at approximately 1640 cm−1 corresponding to the

O-H bending band of water (ν2 mode) [196]. Each of the spectra in Figure E.1 corresponds

to a concentration of 1 m except for lithium carbonate (Li2CO3). The solubility of lithium

carbonate is less than 1 m, hence the Raman and FTIR spectra correspond to a saturated

solution of the salt (0.304 m, determined in this work) at 25 ◦C. The dissolution of boric

acid (B(OH)3) at high pH (greater than 13) is given by the following reaction:

B(OH)3 + OH− ⇀↽ B(OH)−4 (E.1)

At high pH, boric acid mainly dissociates into the borate ion [197, 198], B(OH)−4 ,

whose presence can be further corroborated by examining the spectrum of boric acid solu-

tion in Figure E.1a (i). The FTIR spectrum exhibits spectral features at 1150 and 950 cm−1.

The broad peak at 1150 cm−1 corresponds to the B-O-H in-plane bending, while the peak
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Figure E.1: a) FTIR and baseline-corrected b) Raman spectra of soluble GFC components
in a basic 3 m NaOH solution: (i) boric acid (B(OH)3), (ii) lithium carbonate (Li2(CO)3),
and (iii) vanadium pentoxide (V2O5). The characteristic peaks have been marked with an
‘*’ and their corresponding wavenumbers have been listed.

at 950 cm−1 is caused by the B-O asymmetric stretching vibrations in the borate ion [197,

198]. The corresponding Raman peak for the borate ion in Figure E.1b (i) is observed at

745 cm−1, representing total symmetrical vibrations [199].

Lithium carbonate shows significant dissolution and dissociation (Equation E.2) at al-

kaline conditions into carbonate (CO2−
3 ) ions.

Li2CO3 → 2Li+ + CO2−
3 (E.2)

The FTIR and Raman spectra of lithium carbonate in 3 m NaOH solution are shown

in Figure E.1a (ii) and Figure E.1b (ii), respectively. The FTIR spectrum exhibits a strong

peak at 1380 cm−1 which originates due to the C–O asymmetrical in-plane stretch of the

carbonate ion (CO2−
3 ) [196]. The corresponding Raman spectrum also has a sharp peak

around 1060 cm−1 arising due to the C–O symmetric stretching vibrations [200].

Vanadium pentoxide (V2O5) is an amphoteric oxide and is soluble in strong alkaline

solutions to form metavanadate (VO3−) and orthovanadate (VO3−
4 ) ions:

V2O5 + 6OH− → 2VO3−
4 + 3H2O (E.3)
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V2O5 + 2OH− → 2VO−
3 + H2O (E.4)

At pH greater than 13, the main ion present in the solution is the orthovanadate ion

[201] (Equation E.3) which does not appear on the FTIR spectrum (Figure E.1a (iii)) but is

Raman-active. The presence of the orthovanadate ion can be deduced by the spectral bands

in the Raman spectrum (Figure E.1b (iii)). The Raman spectrum shows two bands at 878

and 825 cm−1. The strongest band at 878 cm−1 is due to the symmetric stretching of the

VO3 units while the 825 cm−1 is associated with the symmetric stretching vibrations of the

VO2 units [202].

Insoluble Species

The FTIR and Raman references for the insoluble species were obtained by adding 5 g

of a single type of solid (silica, kyanite, olivine, wollastonite, and zircon) to a 3 m NaOH

solution (50 g/kg water) and stirring overnight. The silicates were observed to deposit on

the ATR-FTIR probe window (Figure 4.2b). Therefore, FTIR reference spectra for silicates

were obtained by pipetting around 5 mL of the solution containing solid particles, followed

by centrifugation and filtration by passing the supernatant through a syringe filter (0.22 µm

pore size) to ensure all solid particles were removed from the solution before measuring

their FTIR spectra (Figure E.2a). The reference Raman spectra, on the other hand, were

obtained by analyzing the slurry (containing solids suspended via mixing) with a Raman

probe (Figure E.2b and Figure E.2c).

The FTIR spectra exhibit a single peak at 1640 cm−1 (Figure E.2a) which is attributed

to the O–H bending vibrations of the water molecule [196]. Apart from the O-H bending

vibrations from water at 1640 cm−1, no other spectral features were observed in the FTIR

spectra (Figure E.2a) for the five studied silicates. Similarly, no peaks were observed in

the Raman spectra of the filtered solutions (data not shown). This again demonstrates

negligible solubility that is shown by inductively coupled plasma (ICP) results [19].
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Figure E.2: Highest-peak normalized a) ATR-FTIR spectra of filtered silicate solution
and baseline corrected b) Raman spectra of suspended silicates (50 g/kg water) in a ba-
sic 3 m NaOH solution: silica (SiO2), kyanite (Al2SiO5), olivine (Mg2SiO4), wollastonite
(CaSiO3), and zircon (ZrSiO4). The c) unnormalized kyanite spectrum showing broad flu-
orescence background. The Raman peaks corresponding to the solids have been marked
with an ‘*’ and their corresponding wavenumbers have been listed.

The reference Raman spectra of solids (silica and silicates) in 3 m NaOH solution are

shown in Figure E.2b. Three peaks are present in every measurement located at: 419, 577,

and 751 cm−1 due to the sapphire tip of the probe. The Raman spectrum of silica (SiO2)

in Figure E.2b (i) has a sharp peak at 436 cm−1 which arises due to the symmetric stretch-

ing vibrations of the Si–O–Si units [203, 204]. Similar Si–O–Si stretching interactions in

olivine occur as a doublet at 824 and 856 cm−1 (Figure E.2b (iii)). Both features arise from

coupled symmetric and asymmetric stretching vibrational modes of the SiO4 tetrahedral

units [205]. Raman spectra of wollastonite shows multiple features in the spectral region

of 600 to 1500 cm−1 (Figure E.2b (iv)). The peak at 636 cm−1 is attributed to the Si–O–Si

bending vibrations, whereas the bands at 970, 1360, and around 1415 cm−1 are due to

Si–O stretching vibrations [206]. Zircon also exhibits a sharp peak at 1400 cm−1 arising

from the Si–O stretching vibrations. The Raman spectrum of kyanite (Al2SiO5) does not
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have strongly resolved peaks. However, the kyanite spectrum has a signature broad shape

centered around 500 cm−1 (Figure E.2c) that is also observed in spectra of GFC mixtures.

Metal Oxides

The FTIR and Raman spectra of various oxides constituting the glass-forming chemi-

cals (GFCs) are shown in Figure E.3a and Figure E.3b, respectively. The slurries probed

using ATR-FTIR and Raman contain around 5 g of the solid compound dispersed in a 3 m

NaOH solution (50 g/kg water). Except for the peak at 1640 cm−1, which is attributable to

the O–H bending vibrations in the water molecule, no spectral features are observed in the

FTIR spectra (Figure E.3a). However, ICP data [19] show that some oxides, particularly

zinc oxide (ZnO), are significantly soluble at high pH. Dissolution information combined

with the observed spectra of Figure E.3a indicate that these oxides are not infrared active

in the wavenumber range studied or that the sensitivity of the probe is not high enough to

detect dissolved concentrations. The corresponding Raman spectra of the solid compounds

exhibits several peaks for suspended particles of rutile (TiO2, Figure E.3b (i)) and hematite

(Fe2O3, Figure E.3b (iv)) that can be used for identification of the compounds in a mixture.

Peaks at 143, 447, and 612 cm−1 are observed in the Raman spectra of rutile (Figure E.3b

(i)) corresponding to the B1g, Eg, and A1g vibrational modes respectively. The Raman spec-

tra of hematite has peaks at 227, 293, 418, and 610 cm−1 (Figure E.3b (iv)). While the

peak at 227 cm−1 represents the A1g phonon band mode, peaks at 293, 418, and 610 cm−1

are attributed to the Eg mode vibrations. These bands involve displacement of both iron

and oxygen within Fe(O)6 octahedral units [207, 208]. The other oxides, zinc oxide and

tin oxide (SnO2), do not have any visible spectral features in the measured Raman spectra

except for background fluorescence (Figure E.3b (ii and iii)).
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Figure E.3: a) FTIR and baseline corrected b) Raman spectra of metal oxides GFC compo-
nents in a basic 3 m NaOH solution. (i) Rutile (TiO2), (ii) zinc oxide (ZnO), (iii) tin oxide
(SnO2), and (iv) hematite (Fe2O3). The Raman peaks corresponding to the solids have been
marked with an ‘*’ and their corresponding wavenumbers have been listed.
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APPENDIX F

INDEPENDENCE OF SLURRY SAMPLES FOR CHAPTER 4

Presented here are results to supplement Chapter 4 and verify that the presented quan-

tification is from the spectra and not correlation between samples since samples were not

i.i.d.. Without sufficient independence between predicted variables, the model may have

accurate quantification without necessarily quantifying the spectra. Spurious correlation

between variables becomes a greater challenge when working with a high dimensional in-

put space (202 and 3101 features for ATR-FTIR and Raman spectra, respectively), high

dimensional output space (5 quantified components for each spectroscopy), and a limited

sample space (48 and 66 samples, respectively). An investigation of correlations between

outputs (concentration) was performed. The coefficient of determination (the square of

correlation, commonly seen as r2) was used to account for large magnitude correlations.

Figure F.1 shows the coefficient of determination of the components. An r2 value of 1 is

expected on the diagonal, because variables are perfectly correlated with themselves.

The heatmaps in Figure F.1 show the correlation between species for the dataset used in

this work. To test the impact of data correlation, two PLSR models were constructed, one

corresponding to quantified solids (kyanite, wollastonite, olivine, silica, and zircon) and

the other corresponding to quantified solution species (nitrate, nitrite, carbonate, sulfate,

and borate). Each PLSR model was constructed so that four of the respective quantified

species were used as model inputs, while the remaining component was quantified. This

is structurally similar to the quantification performed in Section 4.3.4 and Section 4.3.5

except that the input data is the concentrations of other species, rather than spectra. The

two PLSR models of this section used four latent variables each, equal to the number max-

imum allowable with four input variables. This quantification isolates the effects of cor-

relation between species: any prediction capability in Figure F.2 results from correlations
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in the dataset. If the model is quantifying based on artifacts in the dataset, we expect the

quantification accuracy in Figure F.2 to match the quantification accuracy in Figure 4.7 and

Figure 4.10. Fig Figure F.2 shows the parity plots for both the soluble species and insoluble

species studied.

From the results of the parity plots, it can be seen that a substantial amount of scatter

exists for all the species when using other species as model inputs rather than spectra. This

indicates that the PLSR models are quantifying the spectra and not making use of spurious

correlations in the dataset to produce effective quantification.

The high correlation/prediction accuracy of borate in Figure F.2 warrants additional

discussion. Borate produces the best quantification of all the species when using concen-

trations of other species for quantification. This likely results from the manner in which

boric acid was added to solutions. Additions were done in two steps: a soluble species

addition and a GFC addition. The soluble species addition consisted of nitrate, nitrite, car-

bonate, and sulfate (in addition to phosphate, acetate, and oxalate as minor species). The

GFC addition, however, contained soluble boric acid and lithium carbonate. Because of

this, boric acid was added in specific concentrations dictated by GFC composition rather

than designed via pseudorandom uniform distribution like the other species. Despite this,

the results in the manuscript with an R2 value of 0.998 are substantially better than could

be achieved through the correlation in Figure F.2.
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(a) (b)

Figure F.1: Coefficient of determination plots for a) five quantified insoluble species and
b) five quantified solution components.
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Figure F.2: Parity plots for both soluble and insoluble components when using the con-
centrations of the other species as inputs to a PLSR model. From these results, it can be
concluded that the prediction accuracy achieved in Chapter 4 are not due to a correlated
dataset.
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APPENDIX G

STATE SPACE FORMULATION FOR MODEL-BASED FAULT DETECTION

The following equations show how the mass balance in Chapter 6 (i.e. Equation 6.8) is

converted to state-space notation for Section 6.3. The below equations have their variables

explained in Chapter 6.

mall
k,t =



m1
k,t

m2
k,t

...

ms−1
k,t

ms
k,t


, xt =



mall
1,t

mall
2,t

...

mall
v−1,t

mall
v,t



(G.1)
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αall
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(G.2)
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APPENDIX H

HIGH-LEVEL WASTE SLURRY DATA

Presented here are data used in Chapter 7 that are typical of multicomponent high-level

waste (HLW) slurries with different practical faults tested.

H.1 Experimental Data

The starting solution (used for insoluble-phase training data and all validation and test

data) was made in a using the composition: 88.1057 wt% H2O, 10.573 wt% NaOH, and

1.322 wt% Al(OH)3.
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Table H.1: Solution compositions (in grams) for solution-phase training experiments.

Index NaNO3 NaNO2 Na2SO4 H3BO3 H2O NaOH
0 7.08 4.76 0.85 0.90 101.09 11.99
1 10.62 5.59 1.86 2.70 101.09 11.99
2 6.37 4.21 0.00 3.58 101.01 12.00
3 8.51 7.52 1.55 11.64 101.01 12.00
4 7.79 6.42 0.43 6.26 101.34 12.09
5 11.32 8.06 1.13 12.51 101.34 12.09
6 9.21 3.92 0.28 5.37 100.36 12.01
7 16.99 6.13 0.99 7.16 100.36 12.01
8 12.04 7.24 1.98 0.00 100.79 12.14
9 16.30 6.69 1.43 8.05 100.97 12.01
10 13.46 6.97 2.13 4.46 100.33 12.14
11 9.93 5.30 1.70 13.43 100.68 12.05
12 12.76 5.87 0.72 10.74 100.32 12.10
13 15.59 5.03 0.57 8.94 100.61 12.10
14 14.17 4.47 1.29 1.79 101.05 12.04

Table H.2: Slurry compositions (in grams) for insoluble-phase training experiments.

Index Fe2O3 Al2SiO5 SiO2 Al(OH)3 Starting Solution
0 4.66 5.70 4.96 4.65 113.72
1 11.47 10.14 10.40 2.72 113.72
2 3.31 2.74 0.34 8.72 113.52
3 7.37 20.44 8.88 12.20 113.52
4 6.04 14.55 2.65 12.79 113.68
5 6.81 23.40 6.54 9.51 113.68
6 8.73 1.28 1.85 11.43 113.66
7 23.71 13.06 5.74 2.74 113.66
8 14.19 19.00 11.20 3.28 113.45
9 22.37 16.06 8.11 15.52 113.48
10 16.92 17.51 11.96 10.05 113.75
11 10.10 8.67 9.64 23.64 113.56
12 15.56 11.60 4.21 19.61 113.65
13 20.98 7.18 3.44 16.86 113.55
14 19.61 21.93 1.07 18.21 113.94
15 18.26 4.22 7.30 6.01 113.74
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APPENDIX I

FAULT DETECTION WITH DIFFERENT SUBSETS OF DATA

In this section, the multivariate statistical process monitoring (MSPM) (fault detection)

from Chapter 7 is performed with Training Data used to generate the three-sigma region

(Figure I.1). Additionally, MSPM was performed with just faults that produced abnormal

sensor readings or composition — altered heel mass faults (Experiments 16, 17, 19, and

20), boric acid in the feed stream (Experiment 27), and incorrect GFC additions (Experi-

ments 28 and 29).

100 101 102

Hotelling T2

101

102

103

104

105

106

SP
E

Train
Validation
Test
Heel
Boric Feed
Incorrect GFC
Sensor
Carbonate
Zircon
Stirrer Failure
pH

Figure I.1: Hotelling T2 and squared prediction error (SPE) of all process data on
logarithmically-scaled axes with a three-sigma confidence interval (ideally covering 98.9%
of Gaussian data in two dimensions) fit to training data. Data without any known faults
are displayed in blue. Data with process faults that had normal composition according to
Table 7.1 and did not produce abnormal sensor measurements are shown in yellow. Data
with the remaining process faults are shown in red. Training data are shown in black. The
performance of the fault detection and conclusions drawn were unaffected by using training
data to construct the three-sigma bounds.
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Figure I.2: Hotelling T2 and reconstruction SPE on logarithmically-scaled axes with a
three-sigma confidence interval (ideally covering 98.9% of data in two dimensions). Data
without any known faults are displayed in blue. Data with process faults are shown in red.

Table I.1: Table of error metrics corresponding to Figure I.2.

Metric All Instruments Raman ATR-FTIR FBRM
Accuracy 0.895 0.737 0.632 0.579
Precision 0.857 0.818 0.857 1.000
Recall 1.000 0.750 0.500 0.333
F1-Score 0.923 0.783 0.632 0.500
Average 0.919 0.772 0.655 0.603
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